Published

1993-01-01

The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems

Keywords:


Existence theorems, general equilibrium, Pareto optima, math, economic systems (es)

Authors

  • H. G. Tillman University of Münster

We consider a Mathematical Economic System (M.E.S.) of Arrow- Debreu type, [Formula Matemática] where E = E(ro) is a locally convex R- vector space. We assume E barreled, later on we assume E a reflexive Banach Latice.

Example. /P, LP(μ), 1 ≤ p ≤∞Hilbert spaces.

Question: Which topologies τ in X are suitable for Economic Models?

How to Cite

APA

Tillman, H. G. (1993). The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. Revista Colombiana de Matemáticas, 27(1-2), 127–130. https://revistas.unal.edu.co/index.php/recolma/article/view/33582

ACM

[1]
Tillman, H.G. 1993. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. Revista Colombiana de Matemáticas. 27, 1-2 (Jan. 1993), 127–130.

ACS

(1)
Tillman, H. G. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. rev.colomb.mat 1993, 27, 127-130.

ABNT

TILLMAN, H. G. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. Revista Colombiana de Matemáticas, [S. l.], v. 27, n. 1-2, p. 127–130, 1993. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33582. Acesso em: 22 jan. 2025.

Chicago

Tillman, H. G. 1993. “The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems”. Revista Colombiana De Matemáticas 27 (1-2):127-30. https://revistas.unal.edu.co/index.php/recolma/article/view/33582.

Harvard

Tillman, H. G. (1993) “The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems”, Revista Colombiana de Matemáticas, 27(1-2), pp. 127–130. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33582 (Accessed: 22 January 2025).

IEEE

[1]
H. G. Tillman, “The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems”, rev.colomb.mat, vol. 27, no. 1-2, pp. 127–130, Jan. 1993.

MLA

Tillman, H. G. “The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems”. Revista Colombiana de Matemáticas, vol. 27, no. 1-2, Jan. 1993, pp. 127-30, https://revistas.unal.edu.co/index.php/recolma/article/view/33582.

Turabian

Tillman, H. G. “The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems”. Revista Colombiana de Matemáticas 27, no. 1-2 (January 1, 1993): 127–130. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33582.

Vancouver

1.
Tillman HG. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. rev.colomb.mat [Internet]. 1993 Jan. 1 [cited 2025 Jan. 22];27(1-2):127-30. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/33582

Download Citation

Article abstract page views

117

Downloads

Download data is not yet available.