Veröffentlicht

1999-01-01

Non-commutative reduction rings

Schlagworte:

Reduction rings, Gröbner bases, non-commutative rings, standard ring constructions (es)

Autor/innen

  • Klaus Madlener Universität Kaiserslautern
  • Birgit Reinert Universität Kaiserslautern

Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Grabner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitely generated ideal has a finite Gröbner basis. This paper gives an axiomatic framework for studying reduction rings including non-commutative rings and explores when and how the property of being a reduction ring is preserved by standard ring constructions such as quotients and sums of reduction rings, as well as extensions to polynomial and monoid rings over reduction rings.

Moreover, it is outlined when such reduction rings are effective

Zitationsvorschlag

APA

Madlener, K. und Reinert, B. (1999). Non-commutative reduction rings. Revista Colombiana de Matemáticas, 33(1), 27–49. https://revistas.unal.edu.co/index.php/recolma/article/view/33745

ACM

[1]
Madlener, K. und Reinert, B. 1999. Non-commutative reduction rings. Revista Colombiana de Matemáticas. 33, 1 (Jan. 1999), 27–49.

ACS

(1)
Madlener, K.; Reinert, B. Non-commutative reduction rings. rev.colomb.mat 1999, 33, 27-49.

ABNT

MADLENER, K.; REINERT, B. Non-commutative reduction rings. Revista Colombiana de Matemáticas, [S. l.], v. 33, n. 1, p. 27–49, 1999. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33745. Acesso em: 22 jan. 2025.

Chicago

Madlener, Klaus, und Birgit Reinert. 1999. „Non-commutative reduction rings“. Revista Colombiana De Matemáticas 33 (1):27-49. https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Harvard

Madlener, K. und Reinert, B. (1999) „Non-commutative reduction rings“, Revista Colombiana de Matemáticas, 33(1), S. 27–49. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33745 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
K. Madlener und B. Reinert, „Non-commutative reduction rings“, rev.colomb.mat, Bd. 33, Nr. 1, S. 27–49, Jan. 1999.

MLA

Madlener, K., und B. Reinert. „Non-commutative reduction rings“. Revista Colombiana de Matemáticas, Bd. 33, Nr. 1, Januar 1999, S. 27-49, https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Turabian

Madlener, Klaus, und Birgit Reinert. „Non-commutative reduction rings“. Revista Colombiana de Matemáticas 33, no. 1 (Januar 1, 1999): 27–49. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Vancouver

1.
Madlener K, Reinert B. Non-commutative reduction rings. rev.colomb.mat [Internet]. 1. Januar 1999 [zitiert 22. Januar 2025];33(1):27-49. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33745

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

167

Downloads

Keine Nutzungsdaten vorhanden.