Publié-e

1999-01-01

Non-commutative reduction rings

Mots-clés :

Reduction rings, Gröbner bases, non-commutative rings, standard ring constructions (es)

Téléchargements

Auteurs-es

  • Klaus Madlener Universität Kaiserslautern
  • Birgit Reinert Universität Kaiserslautern

Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Grabner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitely generated ideal has a finite Gröbner basis. This paper gives an axiomatic framework for studying reduction rings including non-commutative rings and explores when and how the property of being a reduction ring is preserved by standard ring constructions such as quotients and sums of reduction rings, as well as extensions to polynomial and monoid rings over reduction rings.

Moreover, it is outlined when such reduction rings are effective

Comment citer

APA

Madlener, K. et Reinert, B. (1999). Non-commutative reduction rings. Revista Colombiana de Matemáticas, 33(1), 27–49. https://revistas.unal.edu.co/index.php/recolma/article/view/33745

ACM

[1]
Madlener, K. et Reinert, B. 1999. Non-commutative reduction rings. Revista Colombiana de Matemáticas. 33, 1 (janv. 1999), 27–49.

ACS

(1)
Madlener, K.; Reinert, B. Non-commutative reduction rings. rev.colomb.mat 1999, 33, 27-49.

ABNT

MADLENER, K.; REINERT, B. Non-commutative reduction rings. Revista Colombiana de Matemáticas, [S. l.], v. 33, n. 1, p. 27–49, 1999. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33745. Acesso em: 22 janv. 2025.

Chicago

Madlener, Klaus, et Birgit Reinert. 1999. « Non-commutative reduction rings ». Revista Colombiana De Matemáticas 33 (1):27-49. https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Harvard

Madlener, K. et Reinert, B. (1999) « Non-commutative reduction rings », Revista Colombiana de Matemáticas, 33(1), p. 27–49. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/33745 (Consulté le: 22 janvier 2025).

IEEE

[1]
K. Madlener et B. Reinert, « Non-commutative reduction rings », rev.colomb.mat, vol. 33, nᵒ 1, p. 27–49, janv. 1999.

MLA

Madlener, K., et B. Reinert. « Non-commutative reduction rings ». Revista Colombiana de Matemáticas, vol. 33, nᵒ 1, janvier 1999, p. 27-49, https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Turabian

Madlener, Klaus, et Birgit Reinert. « Non-commutative reduction rings ». Revista Colombiana de Matemáticas 33, no. 1 (janvier 1, 1999): 27–49. Consulté le janvier 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Vancouver

1.
Madlener K, Reinert B. Non-commutative reduction rings. rev.colomb.mat [Internet]. 1 janv. 1999 [cité 22 janv. 2025];33(1):27-49. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/33745

Télécharger la référence

Consultations de la page du résumé de l'article

167

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.