Veröffentlicht

2014-01-01

On the Connectedness of the Spectrum of Forcing Algebras

Sobre la conexidad del espectro de álgebras de forzado

DOI:

https://doi.org/10.15446/recolma.v48n1.45192

Schlagworte:

Forcing algebra, Connectedness, Integral closure (en)
Álgebra de forzado, conexidad, clausura entera (es)

Autor/innen

  • Holger Brenner Universität Osnabrück
  • Danny de Jesús Gómez-Ramírez Universität Osnabrück
We study the connectedness property of the spectrum of forcing algebras over a noetherian ring. In particular we present for an integral base ring a geometric criterion for connectedness in terms of horizontal and vertical components of the forcing algebra. This criterion allows further simplifications when the base ring is local, or one--dimensional, or factorial. Besides, we discuss whether the connectedness of forcing algebras is a local property. Finally, we present a characterization of the integral closure of an ideal by means of the universal connectedness of the corresponding forcing morphism.
Estudiamos la conexidad del espectro de álgebras de forzado sobre anillo noetherianos. En particular, presentamos un criterio de conexidad cuando el anillo base es un dominio en términos de las componentes verticales y horizontales del álgebra de forzado. Este criterio nos permite obtener simplificaciones en el caso en el que el anillo base es local, o 1--dimensional o un dominio de factorización única. Además, discutimos sobre si la conexidad de las álgebras de forzado es una propiedad local. Finalmente, presentamos una caracterización de pertenencia a la clausura entera de un ideal en términos de la conexidad universal del correspondiente morfismo de forzado.

On the Connectedness of the Spectrum of Forcing Algebras

Sobre la conexidad del espectro de álgebras de forzado

HOLGER BRENNER1, DANNY DE JESÚS GÓMEZ-RAMÍREZ2

1Universität Osnabrück, Osnabrück, Germany. Email: hbrenner@uos.de
2Universität Osnabrück, Osnabrück, Germany. Email: dagomez1982@yahoo.com


Abstract

We study the connectedness property of the spectrum of forcing algebras over a noetherian ring. In particular we present for an integral base ring a geometric criterion for connectedness in terms of horizontal and vertical components of the forcing algebra. This criterion allows further simplifications when the base ring is local, or one--dimensional, or factorial. Besides, we discuss whether the connectedness of forcing algebras is a local property. Finally, we present a characterization of the integral closure of an ideal by means of the universal connectedness of the corresponding forcing morphism.

Key words: Forcing algebra, Connectedness, Integral closure.


2000 Mathematics Subject Classification: 13B22, 14A15, 14R25, 54D05.

Resumen

Estudiamos la conexidad del espectro de álgebras de forzado sobre anillo noetherianos. En particular, presentamos un criterio de conexidad cuando el anillo base es un dominio en términos de las componentes verticales y horizontales del álgebra de forzado. Este criterio nos permite obtener simplificaciones en el caso en el que el anillo base es local, o 1--dimensional o un dominio de factorización única. Además, discutimos sobre si la conexidad de las álgebras de forzado es una propiedad local. Finalmente, presentamos una caracterización de pertenencia a la clausura entera de un ideal en términos de la conexidad universal del correspondiente morfismo de forzado.

Palabras clave: Álgebra de forzado, conexidad, clausura entera.


Texto completo disponible en PDF


References

[1] H. Brenner, Tight Closure and Vector Bundles, `Three Lectures on Commutative Algebra', (2008), Vol. 42 of University Lecture Series, AMS, p. 1-71.

[2] H. Brenner, Forcing Algebras, Syzygy Bundles, and Tight Closure, `Commutative Algebra. Noetherian and non-Noetherian Perspectives', (2011), Springer.

[3] H. Brenner, `Some Remarks on the Affineness of A1-Bundles', ArXiv, (2012).

[4] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, USA, 1995.

[5] D. d. J. Gomez Ramirez, Homological Conjectures, Closure Operations, Vector Bundles and Forcing Algebras, PhD thesis, Universidad Nacional de Colombia with cooperation of the University of Osnabrück, 2013.

[6] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), `Lecture Notes in Mathematics', (1971), Vol. 224, Springer-Verlag, Berlin, Germany.

[7] R. Hartshorne, Algebraic Geometry, Springer, New York, USA, 1977.

[8] M. Hochster, `Solid closure', Contemp. Math. 159, (1994), 103-172.

[9] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, Vol. LMS 336, Cambridge University Press, Cambridge, USA, 2006.


(Recibido en febrero de 2012. Aceptado en agosto de 2013)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv48n1a01,
    AUTHOR  = {Brenner, Holger and Gómez-Ramírez, Danny de Jesús},
    TITLE   = {{On the Connectedness of the Spectrum of Forcing Algebras}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2014},
    volume  = {48},
    number  = {1},
    pages   = {1--19}
}

Literaturhinweise

H. Brenner, Tight Closure and Vector Bundles, 'Three Lectures on Commutative Algebra', (2008), Vol. 42 of University Lecture Series, AMS, p. 1-71.

H. Brenner, Forcing Algebras, Syzygy Bundles, and Tight Closure, 'Commutative Algebra. Noetherian and non-Noetherian Perspectives', (2011), Springer.

H. Brenner, 'Some Remarks on the Affineness of A1-Bundles', ArXiv, (2012).

D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, USA, 1995.

D. d. J. Gomez Ramirez, Homological Conjectures, Closure Operations, Vector Bundles and Forcing Algebras, PhD thesis, Universidad Nacional de Colombia with cooperation of the University of Osnabrück, 2013.

A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), 'Lecture Notes in Mathematics', (1971), Vol. 224, Springer-Verlag, Berlin, Germany.

R. Hartshorne, Algebraic Geometry, Springer, New York, USA, 1977.

M. Hochster, 'Solid closure', Contemp. Math. 159, (1994), 103-172.

C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, Vol. LMS 336, Cambridge University Press, Cambridge, USA, 2006.

Zitationsvorschlag

APA

Brenner, H. und Gómez-Ramírez, D. de J. (2014). On the Connectedness of the Spectrum of Forcing Algebras. Revista Colombiana de Matemáticas, 48(1), 1–19. https://doi.org/10.15446/recolma.v48n1.45192

ACM

[1]
Brenner, H. und Gómez-Ramírez, D. de J. 2014. On the Connectedness of the Spectrum of Forcing Algebras. Revista Colombiana de Matemáticas. 48, 1 (Jan. 2014), 1–19. DOI:https://doi.org/10.15446/recolma.v48n1.45192.

ACS

(1)
Brenner, H.; Gómez-Ramírez, D. de J. On the Connectedness of the Spectrum of Forcing Algebras. rev.colomb.mat 2014, 48, 1-19.

ABNT

BRENNER, H.; GÓMEZ-RAMÍREZ, D. de J. On the Connectedness of the Spectrum of Forcing Algebras. Revista Colombiana de Matemáticas, [S. l.], v. 48, n. 1, p. 1–19, 2014. DOI: 10.15446/recolma.v48n1.45192. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/45192. Acesso em: 22 jan. 2025.

Chicago

Brenner, Holger, und Danny de Jesús Gómez-Ramírez. 2014. „On the Connectedness of the Spectrum of Forcing Algebras“. Revista Colombiana De Matemáticas 48 (1):1-19. https://doi.org/10.15446/recolma.v48n1.45192.

Harvard

Brenner, H. und Gómez-Ramírez, D. de J. (2014) „On the Connectedness of the Spectrum of Forcing Algebras“, Revista Colombiana de Matemáticas, 48(1), S. 1–19. doi: 10.15446/recolma.v48n1.45192.

IEEE

[1]
H. Brenner und D. de J. Gómez-Ramírez, „On the Connectedness of the Spectrum of Forcing Algebras“, rev.colomb.mat, Bd. 48, Nr. 1, S. 1–19, Jan. 2014.

MLA

Brenner, H., und D. de J. Gómez-Ramírez. „On the Connectedness of the Spectrum of Forcing Algebras“. Revista Colombiana de Matemáticas, Bd. 48, Nr. 1, Januar 2014, S. 1-19, doi:10.15446/recolma.v48n1.45192.

Turabian

Brenner, Holger, und Danny de Jesús Gómez-Ramírez. „On the Connectedness of the Spectrum of Forcing Algebras“. Revista Colombiana de Matemáticas 48, no. 1 (Januar 1, 2014): 1–19. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/45192.

Vancouver

1.
Brenner H, Gómez-Ramírez D de J. On the Connectedness of the Spectrum of Forcing Algebras. rev.colomb.mat [Internet]. 1. Januar 2014 [zitiert 22. Januar 2025];48(1):1-19. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/45192

Bibliografische Angaben herunterladen

CrossRef Cited-by

CrossRef citations2

1. Holger Brenner, Danny de Jesús Gómez-Ramírez. (2016). Normality and Related Properties of Forcing Algebras. Communications in Algebra, 44(11), p.4769. https://doi.org/10.1080/00927872.2015.1113291.

2. Danny A. J. Gómez Ramírez. (2020). Artificial Mathematical Intelligence. , p.165. https://doi.org/10.1007/978-3-030-50273-7_10.

Dimensions

PlumX

Aufrufe der Abstractseiten von Artikeln

431

Downloads

Keine Nutzungsdaten vorhanden.