Published

2014-01-01

On the Connectedness of the Spectrum of Forcing Algebras

Sobre la conexidad del espectro de álgebras de forzado

DOI:

https://doi.org/10.15446/recolma.v48n1.45192

Keywords:

Forcing algebra, Connectedness, Integral closure (en)
Álgebra de forzado, conexidad, clausura entera (es)

Downloads

Authors

  • Holger Brenner Universität Osnabrück
  • Danny de Jesús Gómez-Ramírez Universität Osnabrück
We study the connectedness property of the spectrum of forcing algebras over a noetherian ring. In particular we present for an integral base ring a geometric criterion for connectedness in terms of horizontal and vertical components of the forcing algebra. This criterion allows further simplifications when the base ring is local, or one--dimensional, or factorial. Besides, we discuss whether the connectedness of forcing algebras is a local property. Finally, we present a characterization of the integral closure of an ideal by means of the universal connectedness of the corresponding forcing morphism.
Estudiamos la conexidad del espectro de álgebras de forzado sobre anillo noetherianos. En particular, presentamos un criterio de conexidad cuando el anillo base es un dominio en términos de las componentes verticales y horizontales del álgebra de forzado. Este criterio nos permite obtener simplificaciones en el caso en el que el anillo base es local, o 1--dimensional o un dominio de factorización única. Además, discutimos sobre si la conexidad de las álgebras de forzado es una propiedad local. Finalmente, presentamos una caracterización de pertenencia a la clausura entera de un ideal en términos de la conexidad universal del correspondiente morfismo de forzado.

On the Connectedness of the Spectrum of Forcing Algebras

Sobre la conexidad del espectro de álgebras de forzado

HOLGER BRENNER1, DANNY DE JESÚS GÓMEZ-RAMÍREZ2

1Universität Osnabrück, Osnabrück, Germany. Email: hbrenner@uos.de
2Universität Osnabrück, Osnabrück, Germany. Email: dagomez1982@yahoo.com


Abstract

We study the connectedness property of the spectrum of forcing algebras over a noetherian ring. In particular we present for an integral base ring a geometric criterion for connectedness in terms of horizontal and vertical components of the forcing algebra. This criterion allows further simplifications when the base ring is local, or one--dimensional, or factorial. Besides, we discuss whether the connectedness of forcing algebras is a local property. Finally, we present a characterization of the integral closure of an ideal by means of the universal connectedness of the corresponding forcing morphism.

Key words: Forcing algebra, Connectedness, Integral closure.


2000 Mathematics Subject Classification: 13B22, 14A15, 14R25, 54D05.

Resumen

Estudiamos la conexidad del espectro de álgebras de forzado sobre anillo noetherianos. En particular, presentamos un criterio de conexidad cuando el anillo base es un dominio en términos de las componentes verticales y horizontales del álgebra de forzado. Este criterio nos permite obtener simplificaciones en el caso en el que el anillo base es local, o 1--dimensional o un dominio de factorización única. Además, discutimos sobre si la conexidad de las álgebras de forzado es una propiedad local. Finalmente, presentamos una caracterización de pertenencia a la clausura entera de un ideal en términos de la conexidad universal del correspondiente morfismo de forzado.

Palabras clave: Álgebra de forzado, conexidad, clausura entera.


Texto completo disponible en PDF


References

[1] H. Brenner, Tight Closure and Vector Bundles, `Three Lectures on Commutative Algebra', (2008), Vol. 42 of University Lecture Series, AMS, p. 1-71.

[2] H. Brenner, Forcing Algebras, Syzygy Bundles, and Tight Closure, `Commutative Algebra. Noetherian and non-Noetherian Perspectives', (2011), Springer.

[3] H. Brenner, `Some Remarks on the Affineness of A1-Bundles', ArXiv, (2012).

[4] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, USA, 1995.

[5] D. d. J. Gomez Ramirez, Homological Conjectures, Closure Operations, Vector Bundles and Forcing Algebras, PhD thesis, Universidad Nacional de Colombia with cooperation of the University of Osnabrück, 2013.

[6] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), `Lecture Notes in Mathematics', (1971), Vol. 224, Springer-Verlag, Berlin, Germany.

[7] R. Hartshorne, Algebraic Geometry, Springer, New York, USA, 1977.

[8] M. Hochster, `Solid closure', Contemp. Math. 159, (1994), 103-172.

[9] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, Vol. LMS 336, Cambridge University Press, Cambridge, USA, 2006.


(Recibido en febrero de 2012. Aceptado en agosto de 2013)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv48n1a01,
    AUTHOR  = {Brenner, Holger and Gómez-Ramírez, Danny de Jesús},
    TITLE   = {{On the Connectedness of the Spectrum of Forcing Algebras}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2014},
    volume  = {48},
    number  = {1},
    pages   = {1--19}
}

References

H. Brenner, Tight Closure and Vector Bundles, 'Three Lectures on Commutative Algebra', (2008), Vol. 42 of University Lecture Series, AMS, p. 1-71.

H. Brenner, Forcing Algebras, Syzygy Bundles, and Tight Closure, 'Commutative Algebra. Noetherian and non-Noetherian Perspectives', (2011), Springer.

H. Brenner, 'Some Remarks on the Affineness of A1-Bundles', ArXiv, (2012).

D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, USA, 1995.

D. d. J. Gomez Ramirez, Homological Conjectures, Closure Operations, Vector Bundles and Forcing Algebras, PhD thesis, Universidad Nacional de Colombia with cooperation of the University of Osnabrück, 2013.

A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), 'Lecture Notes in Mathematics', (1971), Vol. 224, Springer-Verlag, Berlin, Germany.

R. Hartshorne, Algebraic Geometry, Springer, New York, USA, 1977.

M. Hochster, 'Solid closure', Contemp. Math. 159, (1994), 103-172.

C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, Vol. LMS 336, Cambridge University Press, Cambridge, USA, 2006.

How to Cite

APA

Brenner, H. and Gómez-Ramírez, D. de J. (2014). On the Connectedness of the Spectrum of Forcing Algebras. Revista Colombiana de Matemáticas, 48(1), 1–19. https://doi.org/10.15446/recolma.v48n1.45192

ACM

[1]
Brenner, H. and Gómez-Ramírez, D. de J. 2014. On the Connectedness of the Spectrum of Forcing Algebras. Revista Colombiana de Matemáticas. 48, 1 (Jan. 2014), 1–19. DOI:https://doi.org/10.15446/recolma.v48n1.45192.

ACS

(1)
Brenner, H.; Gómez-Ramírez, D. de J. On the Connectedness of the Spectrum of Forcing Algebras. rev.colomb.mat 2014, 48, 1-19.

ABNT

BRENNER, H.; GÓMEZ-RAMÍREZ, D. de J. On the Connectedness of the Spectrum of Forcing Algebras. Revista Colombiana de Matemáticas, [S. l.], v. 48, n. 1, p. 1–19, 2014. DOI: 10.15446/recolma.v48n1.45192. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/45192. Acesso em: 22 jan. 2025.

Chicago

Brenner, Holger, and Danny de Jesús Gómez-Ramírez. 2014. “On the Connectedness of the Spectrum of Forcing Algebras”. Revista Colombiana De Matemáticas 48 (1):1-19. https://doi.org/10.15446/recolma.v48n1.45192.

Harvard

Brenner, H. and Gómez-Ramírez, D. de J. (2014) “On the Connectedness of the Spectrum of Forcing Algebras”, Revista Colombiana de Matemáticas, 48(1), pp. 1–19. doi: 10.15446/recolma.v48n1.45192.

IEEE

[1]
H. Brenner and D. de J. Gómez-Ramírez, “On the Connectedness of the Spectrum of Forcing Algebras”, rev.colomb.mat, vol. 48, no. 1, pp. 1–19, Jan. 2014.

MLA

Brenner, H., and D. de J. Gómez-Ramírez. “On the Connectedness of the Spectrum of Forcing Algebras”. Revista Colombiana de Matemáticas, vol. 48, no. 1, Jan. 2014, pp. 1-19, doi:10.15446/recolma.v48n1.45192.

Turabian

Brenner, Holger, and Danny de Jesús Gómez-Ramírez. “On the Connectedness of the Spectrum of Forcing Algebras”. Revista Colombiana de Matemáticas 48, no. 1 (January 1, 2014): 1–19. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/45192.

Vancouver

1.
Brenner H, Gómez-Ramírez D de J. On the Connectedness of the Spectrum of Forcing Algebras. rev.colomb.mat [Internet]. 2014 Jan. 1 [cited 2025 Jan. 22];48(1):1-19. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/45192

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Holger Brenner, Danny de Jesús Gómez-Ramírez. (2016). Normality and Related Properties of Forcing Algebras. Communications in Algebra, 44(11), p.4769. https://doi.org/10.1080/00927872.2015.1113291.

2. Danny A. J. Gómez Ramírez. (2020). Artificial Mathematical Intelligence. , p.165. https://doi.org/10.1007/978-3-030-50273-7_10.

Dimensions

PlumX

Article abstract page views

431

Downloads

Download data is not yet available.