Veröffentlicht
On space maximal curves
Sobre curvas maximales en el espacio
DOI:
https://doi.org/10.15446/recolma.v53nsupl.84089Schlagworte:
finite fields, Stöhr-Voloch theory, Hasse-Weil bound, maximal curve (en)cuerpos finitos, teoría de Stöhr-Voloch, cota de Hasse- Weil, curva maximal (es)
Downloads
Literaturhinweise
M. Abdón and F. Torres, Maximal curves in charateristic two, Manuscripta Math. 99 (1999), 39-53.
N. Arakelian, S. Tafazolian, and F. Torres, On the spectrum for the genera of maximal curves over small fields, Adv. Math. Commun. 12 (2018), 143-149.
E. Ballico, Space curves not contained in low degree surfaces in positive characteristic, Noti di Matematica 20 (2000/2001), no. 2, 27-33.
A. Cossidente, G. Korchmáros, and F. Torres, On curves covered by the hermitian curves, J. Algebra 216 (1999), 56-76.
A. Cossidente, G. Korchmáros, and F. Torres, Curves of large genus covered by the hermitian curve, Comm. Algebra 28 (2000), 4707-4728.
S. Fanali and M. Giulietti, On some open problems on maximal curves, Des. Codes Cryptogr. 56 (2010), 131-139.
R. Fuhrman, A. Garcia, and F. Torres, On maximal curves, J. Number Theory 67 (1997), 29-51.
R. Fuhrmann, Algebraische funktionenkörper über endlichen körpern mit maximaler anzahl rationaler stellen, Ph.d dissertation, Universität GH Essen, 1995.
R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106.
A. Garcia, H. Stichtenoth, and C. P. Xing, On subfields of the hermitian function field, Compositio Math. 120 (2000), 137-170.
M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite fiel, Math. Annalen 343 (2009), 229-245.
J. Harris, Curves in projective space, Université de Montréal, 1982.
T. Hoholdt, J. H. van Lint, and R. Pellikaan, Algebraic geometry codes, vol. 1, Elsevier, 1998.
N. E. Hurt, Many rational points, coding theory and algebraic geometry, Kluwer Acad. Publishers, 2003.
Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo 28 (1981), 721-724.
Hirschfeld J. W. P., G. Korchmáros, and F. Torres, Algebraic curves over a finite field, Princeton Univ. Press, 2008.
G. Korchmáros and F. Torres, Embedding of a maximal curve in a hermitian variety, Compositio Math. 128 (2001), 95-113.
G. Korchmáros and F. Torres, On the genus of a maximal curve, Math. Annalen 323 (2002), 589-608.
G. Lachaud, Sommes d'eisenstein et nombre de points de certains courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris Sér. I Math 305 (1987), 729-732.
P. C. Oliveira, Sobre curvas maximais em superfícies cúbicas, Tesis doctoral, Universidade Estadual de Campinas, 2016.
J. Rathmann, The uniform position principle for curves in charateristic p, Math. Annalen 276 (1987), 565-579.
J. C. Rosales and P. A. García-Sanchez, Numerical semigroups with embedding dimension three, Arch. Math. 83 (2004), 488-496.
H. G. Rück and H. Stichtenoth, A characterization of hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.
H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, 2009.
K. O. Stöhr and J. F. Voloch, Weierstrass points and curves over nite fields, Proc. London Math. Soc. 52 (1986), 1-19.
S. Tafazolian, A. Teherán-Herrera, and F. Torres, Further examples of maximal curves wich cannot be covered by the hermitian curve, J. Pure Appl. Algebra 220 (2016), 1122-1132.
C. P. Xing and H. Stichtenoth, The genus of maximal functions fields, Manuscripta Math. 86 (1995), 217-224.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Lizenz
Copyright (c) 2019 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.