Publicado

2019-12-11

On space maximal curves

Sobre curvas maximales en el espacio

DOI:

https://doi.org/10.15446/recolma.v53nsupl.84089

Palabras clave:

finite fields, Stöhr-Voloch theory, Hasse-Weil bound, maximal curve (en)
cuerpos finitos, teoría de Stöhr-Voloch, cota de Hasse- Weil, curva maximal (es)

Descargas

Autores/as

  • Paulo César Oliveira Universidade Regional do Cariri
  • Fernando Torres Universidade Estadual de Campinas - Instituto de Matemática, Estatística e Computação Científica
Any maximal curve X is equipped with an intrinsic embedding π: X → Pr which reveal outstanding properties of the curve. By dealing with the contact divisors of the curve π(X) and tangent lines, in this paper we investigate the first positive element that the Weierstrass semigroup at rational points can have whenever r = 3 and π(X) is contained in a cubic surface.
Toda curva maximal X está intrínsicamente dotada de un mergullo π: X → Pr el cual vislumbra propiedades cruciales de la curva. Para r = 3, considerando los divisores de contacto de la curva π(X) y rectas tangentes, investigamos el posible primer elemento positivo que un semigrupo de Weierstrass en un punto racional puede tener en el caso que π(X) esté contenida en una superficie cúbica.

Referencias

M. Abdón and F. Torres, Maximal curves in charateristic two, Manuscripta Math. 99 (1999), 39-53.

N. Arakelian, S. Tafazolian, and F. Torres, On the spectrum for the genera of maximal curves over small fields, Adv. Math. Commun. 12 (2018), 143-149.

E. Ballico, Space curves not contained in low degree surfaces in positive characteristic, Noti di Matematica 20 (2000/2001), no. 2, 27-33.

A. Cossidente, G. Korchmáros, and F. Torres, On curves covered by the hermitian curves, J. Algebra 216 (1999), 56-76.

A. Cossidente, G. Korchmáros, and F. Torres, Curves of large genus covered by the hermitian curve, Comm. Algebra 28 (2000), 4707-4728.

S. Fanali and M. Giulietti, On some open problems on maximal curves, Des. Codes Cryptogr. 56 (2010), 131-139.

R. Fuhrman, A. Garcia, and F. Torres, On maximal curves, J. Number Theory 67 (1997), 29-51.

R. Fuhrmann, Algebraische funktionenkörper über endlichen körpern mit maximaler anzahl rationaler stellen, Ph.d dissertation, Universität GH Essen, 1995.

R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106.

A. Garcia, H. Stichtenoth, and C. P. Xing, On subfields of the hermitian function field, Compositio Math. 120 (2000), 137-170.

M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite fiel, Math. Annalen 343 (2009), 229-245.

J. Harris, Curves in projective space, Université de Montréal, 1982.

T. Hoholdt, J. H. van Lint, and R. Pellikaan, Algebraic geometry codes, vol. 1, Elsevier, 1998.

N. E. Hurt, Many rational points, coding theory and algebraic geometry, Kluwer Acad. Publishers, 2003.

Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo 28 (1981), 721-724.

Hirschfeld J. W. P., G. Korchmáros, and F. Torres, Algebraic curves over a finite field, Princeton Univ. Press, 2008.

G. Korchmáros and F. Torres, Embedding of a maximal curve in a hermitian variety, Compositio Math. 128 (2001), 95-113.

G. Korchmáros and F. Torres, On the genus of a maximal curve, Math. Annalen 323 (2002), 589-608.

G. Lachaud, Sommes d'eisenstein et nombre de points de certains courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris Sér. I Math 305 (1987), 729-732.

P. C. Oliveira, Sobre curvas maximais em superfícies cúbicas, Tesis doctoral, Universidade Estadual de Campinas, 2016.

J. Rathmann, The uniform position principle for curves in charateristic p, Math. Annalen 276 (1987), 565-579.

J. C. Rosales and P. A. García-Sanchez, Numerical semigroups with embedding dimension three, Arch. Math. 83 (2004), 488-496.

H. G. Rück and H. Stichtenoth, A characterization of hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.

H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, 2009.

K. O. Stöhr and J. F. Voloch, Weierstrass points and curves over nite fields, Proc. London Math. Soc. 52 (1986), 1-19.

S. Tafazolian, A. Teherán-Herrera, and F. Torres, Further examples of maximal curves wich cannot be covered by the hermitian curve, J. Pure Appl. Algebra 220 (2016), 1122-1132.

C. P. Xing and H. Stichtenoth, The genus of maximal functions fields, Manuscripta Math. 86 (1995), 217-224.

Cómo citar

APA

Oliveira, P. C. y Torres, F. (2019). On space maximal curves. Revista Colombiana de Matemáticas, 53(supl), 223–235. https://doi.org/10.15446/recolma.v53nsupl.84089

ACM

[1]
Oliveira, P.C. y Torres, F. 2019. On space maximal curves. Revista Colombiana de Matemáticas. 53, supl (dic. 2019), 223–235. DOI:https://doi.org/10.15446/recolma.v53nsupl.84089.

ACS

(1)
Oliveira, P. C.; Torres, F. On space maximal curves. rev.colomb.mat 2019, 53, 223-235.

ABNT

OLIVEIRA, P. C.; TORRES, F. On space maximal curves. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. supl, p. 223–235, 2019. DOI: 10.15446/recolma.v53nsupl.84089. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/84089. Acesso em: 22 ene. 2025.

Chicago

Oliveira, Paulo César, y Fernando Torres. 2019. «On space maximal curves». Revista Colombiana De Matemáticas 53 (supl):223-35. https://doi.org/10.15446/recolma.v53nsupl.84089.

Harvard

Oliveira, P. C. y Torres, F. (2019) «On space maximal curves», Revista Colombiana de Matemáticas, 53(supl), pp. 223–235. doi: 10.15446/recolma.v53nsupl.84089.

IEEE

[1]
P. C. Oliveira y F. Torres, «On space maximal curves», rev.colomb.mat, vol. 53, n.º supl, pp. 223–235, dic. 2019.

MLA

Oliveira, P. C., y F. Torres. «On space maximal curves». Revista Colombiana de Matemáticas, vol. 53, n.º supl, diciembre de 2019, pp. 223-35, doi:10.15446/recolma.v53nsupl.84089.

Turabian

Oliveira, Paulo César, y Fernando Torres. «On space maximal curves». Revista Colombiana de Matemáticas 53, no. supl (diciembre 11, 2019): 223–235. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/84089.

Vancouver

1.
Oliveira PC, Torres F. On space maximal curves. rev.colomb.mat [Internet]. 11 de diciembre de 2019 [citado 22 de enero de 2025];53(supl):223-35. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/84089

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

721

Descargas

Los datos de descargas todavía no están disponibles.