Veröffentlicht
On n-th roots of meromorphic maps
Sobre raíces n-ésimas de funciones meromorfas
DOI:
https://doi.org/10.15446/recolma.v54n1.89789Schlagworte:
Riemann surfaces, holomorphic branched coverings, maps (en)Superficies de Riemann, cubrimientos ramificados holomorfos, mapas (es)
Downloads
branched covering map of nite type. If n ≥ 2,then we describe a simple geometrical necessary and sucient condition for the existence of some n-th root, that is, a meromorphic map ψ: S → Ĉ such that φ = ψn.
Literaturhinweise
B. N. Apanasov, Conformal Geometry of Discrete Groups and Manifolds, De Gruyter Expositions in Mathematics 32, 2000.
G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Mathematics of the USSR-Izvestiya 14 (1980), no. 2, 247-256.
J. C. García and R. A. Hidalgo, On square roots of meromorphic maps, Results in Mathematics 74 (2019), no. 3, Art. 118, 12 pp., https://doi.org/10.1007/s00025-019-1042-7.
E. Girondo, G. González-Diez, R. A. Hidalgo, and G. A. Jones, Zapponi-orientable dessins d'enfants, Revista Matematica Iberoamericana 36 (2020), no. 2, 549-570.
L. Greenberg, Fundamental polyhedra for kleinian groups, Annals of Mathematics, Second Series 84 (1966), 433-441.
A. Grothendieck, Esquisse d'un Programme. (1984). In Geometric Galois Actions, 1. L. Schneps and P. Lochak eds., London Math. Soc. Lect. Notes Ser 242 (1997), 5-47, Cambridge University Press, Cambridge.
J. G. Ratcliffe, Foundations of hyperbolic manifolds, Berlin, New York: Springer-Verlag, 1994.
K. Strebel, Quadratic differentials, Springer, New-York, 1984.
L. Zapponi, Grafi, differenziali di strebel e curve. Tesi di laurea, Università degli studi di Roma "La Sapienza", 1995.
L. Zapponi, Dessins d'enfants en genre 1. in Geometric Galois Actions, 2. L. Schneps and P. Lochak eds., London Math. Soc. Lecture Note Ser. (1997), 79-116, Cambridge Univ. Press, Cambridge.
L. Zapponi, Fleurs, arbres et cellules: un invariant galoisien pour une famille d'arbres, Compositio Mathematica 122 (2000), 113-133.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Lizenz
Copyright (c) 2020 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.