Published

2020-01-01

On n-th roots of meromorphic maps

Sobre raíces n-ésimas de funciones meromorfas

DOI:

https://doi.org/10.15446/recolma.v54n1.89789

Keywords:

Riemann surfaces, holomorphic branched coverings, maps (en)
Superficies de Riemann, cubrimientos ramificados holomorfos, mapas (es)

Authors

  • Juan C. García Universidad Central del Ecuador
  • Rubén A. Hidalgo Universidad de La Frontera
Let S be a connected Riemann surface and let φ: S → Ĉ be
branched covering map of nite type. If n ≥ 2,then we describe a simple geometrical necessary and sucient condition for the existence of some n-th root, that is, a meromorphic map ψ: S → Ĉ such that φ = ψn.
Sea S una superficie de Riemann conexa y φ: S → Ĉ un cubrimiento ramificado holomorfo de tipo finito. Para cada n ≥ 2 describimos una condición geométrica necesaria y suficiente para la existencia de alguna raíz n-ésima, esto es, una función meromorfa ψ: S → Ĉ de manera que φ = ψn.

References

B. N. Apanasov, Conformal Geometry of Discrete Groups and Manifolds, De Gruyter Expositions in Mathematics 32, 2000.

G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Mathematics of the USSR-Izvestiya 14 (1980), no. 2, 247-256.

J. C. García and R. A. Hidalgo, On square roots of meromorphic maps, Results in Mathematics 74 (2019), no. 3, Art. 118, 12 pp., https://doi.org/10.1007/s00025-019-1042-7.

E. Girondo, G. González-Diez, R. A. Hidalgo, and G. A. Jones, Zapponi-orientable dessins d'enfants, Revista Matematica Iberoamericana 36 (2020), no. 2, 549-570.

L. Greenberg, Fundamental polyhedra for kleinian groups, Annals of Mathematics, Second Series 84 (1966), 433-441.

A. Grothendieck, Esquisse d'un Programme. (1984). In Geometric Galois Actions, 1. L. Schneps and P. Lochak eds., London Math. Soc. Lect. Notes Ser 242 (1997), 5-47, Cambridge University Press, Cambridge.

J. G. Ratcliffe, Foundations of hyperbolic manifolds, Berlin, New York: Springer-Verlag, 1994.

K. Strebel, Quadratic differentials, Springer, New-York, 1984.

L. Zapponi, Grafi, differenziali di strebel e curve. Tesi di laurea, Università degli studi di Roma "La Sapienza", 1995.

L. Zapponi, Dessins d'enfants en genre 1. in Geometric Galois Actions, 2. L. Schneps and P. Lochak eds., London Math. Soc. Lecture Note Ser. (1997), 79-116, Cambridge Univ. Press, Cambridge.

L. Zapponi, Fleurs, arbres et cellules: un invariant galoisien pour une famille d'arbres, Compositio Mathematica 122 (2000), 113-133.

How to Cite

APA

García, J. C. and Hidalgo, R. A. (2020). On n-th roots of meromorphic maps. Revista Colombiana de Matemáticas, 54(1), 65–74. https://doi.org/10.15446/recolma.v54n1.89789

ACM

[1]
García, J.C. and Hidalgo, R.A. 2020. On n-th roots of meromorphic maps. Revista Colombiana de Matemáticas. 54, 1 (Jan. 2020), 65–74. DOI:https://doi.org/10.15446/recolma.v54n1.89789.

ACS

(1)
García, J. C.; Hidalgo, R. A. On n-th roots of meromorphic maps. rev.colomb.mat 2020, 54, 65-74.

ABNT

GARCÍA, J. C.; HIDALGO, R. A. On n-th roots of meromorphic maps. Revista Colombiana de Matemáticas, [S. l.], v. 54, n. 1, p. 65–74, 2020. DOI: 10.15446/recolma.v54n1.89789. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/89789. Acesso em: 2 feb. 2025.

Chicago

García, Juan C., and Rubén A. Hidalgo. 2020. “On n-th roots of meromorphic maps”. Revista Colombiana De Matemáticas 54 (1):65-74. https://doi.org/10.15446/recolma.v54n1.89789.

Harvard

García, J. C. and Hidalgo, R. A. (2020) “On n-th roots of meromorphic maps”, Revista Colombiana de Matemáticas, 54(1), pp. 65–74. doi: 10.15446/recolma.v54n1.89789.

IEEE

[1]
J. C. García and R. A. Hidalgo, “On n-th roots of meromorphic maps”, rev.colomb.mat, vol. 54, no. 1, pp. 65–74, Jan. 2020.

MLA

García, J. C., and R. A. Hidalgo. “On n-th roots of meromorphic maps”. Revista Colombiana de Matemáticas, vol. 54, no. 1, Jan. 2020, pp. 65-74, doi:10.15446/recolma.v54n1.89789.

Turabian

García, Juan C., and Rubén A. Hidalgo. “On n-th roots of meromorphic maps”. Revista Colombiana de Matemáticas 54, no. 1 (January 1, 2020): 65–74. Accessed February 2, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/89789.

Vancouver

1.
García JC, Hidalgo RA. On n-th roots of meromorphic maps. rev.colomb.mat [Internet]. 2020 Jan. 1 [cited 2025 Feb. 2];54(1):65-74. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/89789

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

282

Downloads

Download data is not yet available.