Nontrivial solitary waves of GKP equation in multi-dimensional spaces
Schlagworte:
Mountain Pass Lemma, Solitary wave, Generalized Kadomtsev-Petviashvili equation, 2000 Mathematics Subject Classification, Primary: 35J60 (en)Downloads
Abstract. In this paper, using the Mountain Pass Lemma without (PS) condition due to Ambrosetti and Rabinowitz, we obtain the existence of the nontrivial solitary waves of Generalized Kadomtsev-Petviashvili equation in multidimensional spaces and for superlinear nonlinear term f(u) which satisfies some growth condition. By the Pohozaev type variational identity, we obtain the nonexistence of the nontrivial solitary waves for power function nonlinear case, i.e. f(u) = up where p ≥ 2(2n — 1)/(2n — 3).
Literaturhinweise
A. Ambrosetti & P. H. Rabinowitz, Dual variational methods in critical point theory arid applications, J. Funct. Anal., 1 4 (1973), 49 -38 1.
O. V. Besov, V. P. Ilin & S. M. Nikolskii, Integral Representations of Functions and Imbeddings Theorems, Vol.I, J. Wiley, 1978.
J. Bourgain, On the Cauchy problem for the Kadomtsev-Petxnashmli equation, Geometric and Functional Analysis, 4 (1993), 315 - 341.
A. De Bouard & J. C Saut, Sur les ondes solitarires des equations de Kadomtsev-Petviashmli, C. R. Acad. Sciences Paris, 3 2 0 (1995), 315 -328.
A. De Bouard & J. C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 211-236.
P. Isaza & J. Mejia, Local and Global Cauchy problem for the Kadomtsev-Petviashvili equation in antisotropic Sobolev spaces with negative indices, Comm, in P. D. E., 26 (2001), 1027 -1054.
M. Willem, Minimax Theorems, Birkhauser, Boston-Basel-Berlin, 1996.