Publié-e

2003-01-01

Nontrivial solitary waves of GKP equation in multi-dimensional spaces

Mots-clés :

Mountain Pass Lemma, Solitary wave, Generalized Kadomtsev-Petviashvili equation, 2000 Mathematics Subject Classification, Primary: 35J60 (en)

Téléchargements

Auteurs-es

  • University of Science and Technology of China Anhui

Abstract. In this paper, using the Mountain Pass Lemma without (PS) condition due to Ambrosetti and Rabinowitz, we obtain the existence of the nontrivial solitary waves of Generalized Kadomtsev-Petviashvili equation in multidimensional spaces and for superlinear nonlinear term f(u) which satisfies some growth condition. By the Pohozaev type variational identity, we obtain the nonexistence of the nontrivial solitary waves for power function nonlinear case, i.e. f(u) = up where p ≥ 2(2n — 1)/(2n — 3).

Références

A. Ambrosetti & P. H. Rabinowitz, Dual variational methods in critical point theory arid applications, J. Funct. Anal., 1 4 (1973), 49 -38 1.

O. V. Besov, V. P. Ilin & S. M. Nikolskii, Integral Representations of Functions and Imbeddings Theorems, Vol.I, J. Wiley, 1978.

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petxnashmli equation, Geometric and Functional Analysis, 4 (1993), 315 - 341.

A. De Bouard & J. C Saut, Sur les ondes solitarires des equations de Kadomtsev-Petviashmli, C. R. Acad. Sciences Paris, 3 2 0 (1995), 315 -328.

A. De Bouard & J. C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 211-236.

P. Isaza & J. Mejia, Local and Global Cauchy problem for the Kadomtsev-Petviashvili equation in antisotropic Sobolev spaces with negative indices, Comm, in P. D. E., 26 (2001), 1027 -1054.

M. Willem, Minimax Theorems, Birkhauser, Boston-Basel-Berlin, 1996.

Comment citer

APA

Benjin. (2003). Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Revista Colombiana de Matemáticas, 37(1), 11–23. https://revistas.unal.edu.co/index.php/recolma/article/view/94271

ACM

[1]
Benjin 2003. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Revista Colombiana de Matemáticas. 37, 1 (janv. 2003), 11–23.

ACS

(1)
Benjin. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. rev.colomb.mat 2003, 37, 11-23.

ABNT

BENJIN. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Revista Colombiana de Matemáticas, [S. l.], v. 37, n. 1, p. 11–23, 2003. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94271. Acesso em: 2 févr. 2025.

Chicago

Benjin. 2003. « Nontrivial solitary waves of GKP equation in multi-dimensional spaces ». Revista Colombiana De Matemáticas 37 (1):11-23. https://revistas.unal.edu.co/index.php/recolma/article/view/94271.

Harvard

Benjin (2003) « Nontrivial solitary waves of GKP equation in multi-dimensional spaces », Revista Colombiana de Matemáticas, 37(1), p. 11–23. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/94271 (Consulté le: 2 février 2025).

IEEE

[1]
Benjin, « Nontrivial solitary waves of GKP equation in multi-dimensional spaces », rev.colomb.mat, vol. 37, nᵒ 1, p. 11–23, janv. 2003.

MLA

Benjin. « Nontrivial solitary waves of GKP equation in multi-dimensional spaces ». Revista Colombiana de Matemáticas, vol. 37, nᵒ 1, janvier 2003, p. 11-23, https://revistas.unal.edu.co/index.php/recolma/article/view/94271.

Turabian

Benjin. « Nontrivial solitary waves of GKP equation in multi-dimensional spaces ». Revista Colombiana de Matemáticas 37, no. 1 (janvier 1, 2003): 11–23. Consulté le février 2, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94271.

Vancouver

1.
Benjin. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. rev.colomb.mat [Internet]. 1 janv. 2003 [cité 2 févr. 2025];37(1):11-23. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/94271

Télécharger la référence

Consultations de la page du résumé de l'article

86

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.