Veröffentlicht

2006-01-01

Existence of global entropy solutions to a non-strictly hyperbolic system with a source

Schlagworte:

Entropy solution, Kinetic formulation, The maximum principle, 2000 Mathematics Subject Classification, Primary: 35D05 (en)

Downloads

Autor/innen

  • University of Aeronautics & Astronautics, China

Abstract. In this paper we use the theory of compensated compactness coupled with some basic ideas of the Kinetic formulation to establish an existence theorem for global entropy solutions to the non-strictly hyperbolic system with a source.

                 ρ t + (ρ u)x   = U (ρ,u,x,t)

  ut + (u2/2 + P (ρ))x     =  V (ρ,u,x,t)

En este artículo usamos la teoría de la compacidad compensada asociada con algunas ideas básicas de formulación Kinetica para establecer un teorema de existencia para soluciones de entropía global del sistema no estrictamente hiperbólico con fuente.

               ρ t + (ρ u)x   = U (ρ,u,x,t)

ut + (u2/2 + P (ρ))x     =  V (ρ,u,x,t)

Literaturhinweise

G. Q. Chen & J. Glimm, Global solutions to the compressible Euler equations with geometric structure, Commun. Math. Phys. 180 (1996), 153-193.

X. Ding, G -Q. Chen & P. Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Commn. Math. Phys 1 2 (1989), 63-84.

R. J. Diperna, Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 26 (1973), 1-28.

S. Earnshaw,On the mathematical theory of sound, Philos. Trans. 150 (1858), 1150-1154.

J. Glimm, Solutions in the large for nonliear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 95-105.

C. Klingenberg & Y.- G. Lu, Existence of solutions to hyperbolic conservation Laws with a source, Commun. Math. Phys. 187 (1997), 327-340.

P. L. Lions, B. Perthame & P. E. Souganidis, Existence and stabibility of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 4 9 (1996), 599-638.

P. L. Lions, B. Perthame & E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-system, Comm. Pure Appl. Math. 163 (1994), 415-431.

T. P. Liu, Quasilinear hyperbolic systems, Commn. Math. Phys. 68 (1979), 141-172.

Y. -G. Lu, Convergence of the viscosity method for nonstrictly hyperbolic conservation laws, Commun. Math. Phys. 150 (1992), 59-64.

Y. G. Lu, Existence of generalized solutions for some coupled system of nonlinear hyperbolic equations, J. Sys. Sci. & Math. Scis. 16 (1996) (in Chineses), 125-135.

Y. -G. Lu, Hyperbolic Conservation Laws and the Compensated Compactness Method, Chapman and Hall, CRC Press, New York, 2002.

Y. -G. Lu, Existence of global entropy solutions to a nonstrictly hyperbolic system, Arch. Rat. Mech. Anal. 178 (2005), 287-299.

Zitationsvorschlag

APA

Rei-Fang. (2006). Existence of global entropy solutions to a non-strictly hyperbolic system with a source. Revista Colombiana de Matemáticas, 40(1), 53–64. https://revistas.unal.edu.co/index.php/recolma/article/view/94671

ACM

[1]
Rei-Fang 2006. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. Revista Colombiana de Matemáticas. 40, 1 (Jan. 2006), 53–64.

ACS

(1)
Rei-Fang. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. rev.colomb.mat 2006, 40, 53-64.

ABNT

REI-FANG. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. Revista Colombiana de Matemáticas, [S. l.], v. 40, n. 1, p. 53–64, 2006. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94671. Acesso em: 22 jan. 2025.

Chicago

Rei-Fang. 2006. „Existence of global entropy solutions to a non-strictly hyperbolic system with a source“. Revista Colombiana De Matemáticas 40 (1):53-64. https://revistas.unal.edu.co/index.php/recolma/article/view/94671.

Harvard

Rei-Fang (2006) „Existence of global entropy solutions to a non-strictly hyperbolic system with a source“, Revista Colombiana de Matemáticas, 40(1), S. 53–64. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/94671 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
Rei-Fang, „Existence of global entropy solutions to a non-strictly hyperbolic system with a source“, rev.colomb.mat, Bd. 40, Nr. 1, S. 53–64, Jan. 2006.

MLA

Rei-Fang. „Existence of global entropy solutions to a non-strictly hyperbolic system with a source“. Revista Colombiana de Matemáticas, Bd. 40, Nr. 1, Januar 2006, S. 53-64, https://revistas.unal.edu.co/index.php/recolma/article/view/94671.

Turabian

Rei-Fang. „Existence of global entropy solutions to a non-strictly hyperbolic system with a source“. Revista Colombiana de Matemáticas 40, no. 1 (Januar 1, 2006): 53–64. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94671.

Vancouver

1.
Rei-Fang. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. rev.colomb.mat [Internet]. 1. Januar 2006 [zitiert 22. Januar 2025];40(1):53-64. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/94671

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

20

Downloads

Keine Nutzungsdaten vorhanden.