Pubblicato

2006-01-01

Existence of global entropy solutions to a non-strictly hyperbolic system with a source

Parole chiave:

Entropy solution, Kinetic formulation, The maximum principle, 2000 Mathematics Subject Classification, Primary: 35D05 (en)

##submission.downloads##

Autori

  • University of Aeronautics & Astronautics, China

Abstract. In this paper we use the theory of compensated compactness coupled with some basic ideas of the Kinetic formulation to establish an existence theorem for global entropy solutions to the non-strictly hyperbolic system with a source.

                 ρ t + (ρ u)x   = U (ρ,u,x,t)

  ut + (u2/2 + P (ρ))x     =  V (ρ,u,x,t)

En este artículo usamos la teoría de la compacidad compensada asociada con algunas ideas básicas de formulación Kinetica para establecer un teorema de existencia para soluciones de entropía global del sistema no estrictamente hiperbólico con fuente.

               ρ t + (ρ u)x   = U (ρ,u,x,t)

ut + (u2/2 + P (ρ))x     =  V (ρ,u,x,t)

Riferimenti bibliografici

G. Q. Chen & J. Glimm, Global solutions to the compressible Euler equations with geometric structure, Commun. Math. Phys. 180 (1996), 153-193.

X. Ding, G -Q. Chen & P. Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Commn. Math. Phys 1 2 (1989), 63-84.

R. J. Diperna, Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 26 (1973), 1-28.

S. Earnshaw,On the mathematical theory of sound, Philos. Trans. 150 (1858), 1150-1154.

J. Glimm, Solutions in the large for nonliear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 95-105.

C. Klingenberg & Y.- G. Lu, Existence of solutions to hyperbolic conservation Laws with a source, Commun. Math. Phys. 187 (1997), 327-340.

P. L. Lions, B. Perthame & P. E. Souganidis, Existence and stabibility of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 4 9 (1996), 599-638.

P. L. Lions, B. Perthame & E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-system, Comm. Pure Appl. Math. 163 (1994), 415-431.

T. P. Liu, Quasilinear hyperbolic systems, Commn. Math. Phys. 68 (1979), 141-172.

Y. -G. Lu, Convergence of the viscosity method for nonstrictly hyperbolic conservation laws, Commun. Math. Phys. 150 (1992), 59-64.

Y. G. Lu, Existence of generalized solutions for some coupled system of nonlinear hyperbolic equations, J. Sys. Sci. & Math. Scis. 16 (1996) (in Chineses), 125-135.

Y. -G. Lu, Hyperbolic Conservation Laws and the Compensated Compactness Method, Chapman and Hall, CRC Press, New York, 2002.

Y. -G. Lu, Existence of global entropy solutions to a nonstrictly hyperbolic system, Arch. Rat. Mech. Anal. 178 (2005), 287-299.

Come citare

APA

Rei-Fang. (2006). Existence of global entropy solutions to a non-strictly hyperbolic system with a source. Revista Colombiana de Matemáticas, 40(1), 53–64. https://revistas.unal.edu.co/index.php/recolma/article/view/94671

ACM

[1]
Rei-Fang 2006. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. Revista Colombiana de Matemáticas. 40, 1 (gen. 2006), 53–64.

ACS

(1)
Rei-Fang. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. rev.colomb.mat 2006, 40, 53-64.

ABNT

REI-FANG. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. Revista Colombiana de Matemáticas, [S. l.], v. 40, n. 1, p. 53–64, 2006. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94671. Acesso em: 22 gen. 2025.

Chicago

Rei-Fang. 2006. «Existence of global entropy solutions to a non-strictly hyperbolic system with a source». Revista Colombiana De Matemáticas 40 (1):53-64. https://revistas.unal.edu.co/index.php/recolma/article/view/94671.

Harvard

Rei-Fang (2006) «Existence of global entropy solutions to a non-strictly hyperbolic system with a source», Revista Colombiana de Matemáticas, 40(1), pagg. 53–64. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/94671 (Consultato: 22 gennaio 2025).

IEEE

[1]
Rei-Fang, «Existence of global entropy solutions to a non-strictly hyperbolic system with a source», rev.colomb.mat, vol. 40, n. 1, pagg. 53–64, gen. 2006.

MLA

Rei-Fang. «Existence of global entropy solutions to a non-strictly hyperbolic system with a source». Revista Colombiana de Matemáticas, vol. 40, n. 1, gennaio 2006, pagg. 53-64, https://revistas.unal.edu.co/index.php/recolma/article/view/94671.

Turabian

Rei-Fang. «Existence of global entropy solutions to a non-strictly hyperbolic system with a source». Revista Colombiana de Matemáticas 40, no. 1 (gennaio 1, 2006): 53–64. Consultato gennaio 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94671.

Vancouver

1.
Rei-Fang. Existence of global entropy solutions to a non-strictly hyperbolic system with a source. rev.colomb.mat [Internet]. 1 gennaio 2006 [citato 22 gennaio 2025];40(1):53-64. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/94671

Scarica citazione

Viste delle pagine degli abstract

20

Downloads

I dati di download non sono ancora disponibili.