Rigidity of the Stable Norm on Tori
Rigidez de la norma estable sobre toros
Keywords:
Stable norm, p-norm, Poincaré duality. (en)Norma estable, p-norma, dualidad de Poincaré. (es)
Downloads
1Universidad Michoacana, Morelia, México. Email: osvaldo@ifm.umich.mx
Given a closed, orientable Riemannian manifold, we study the stable norm on the real homology groups. In particular, for n≥ 2 we prove that a Riemanniann-torus, which has the same stable norms as a flat n-torus on the first andn-1 homology groups, is in fact isometric to the flat torus.
Key words: Stable norm, p-norm, Poincaré duality.
2000 Mathematics Subject Classification: 53C23, 53D25, 53C24.
Dada una variedad Riemanniana, cerrada y orientable, estudiamos la norma estable sobre sus grupos de homología real. En particular, para n≥ 2 demostramos que si un n-toro Riemanniano tiene normas estables iguales a las normas estables de un n-toro plano sobre el primer y n-1 grupos de homología; entonces es isométrico a dicho toro plano.
Palabras clave: Norma estable, p-norma, dualidad de Poincaré.
Texto completo disponible en PDF
References
[1] D. Y. B. and S. Ivanov, `Riemannian Tori without Conjugate Points are Flat´, GAFA 4, 3 (1994), 259-269.
[2] I. Babenko and F. Balacheff, `Sur la forme de la boule unité de la norme stable unidimensionnelle´,Manuscripta Math. 119, 3 (2006), 347-358.
[3] V. Bangert, `Geodesic rays, Busemann Functions and Monotone Twist Maps´, Calc. Var. Partial Differential Equations 2, 1 (1994), 49-63.
[4] V. Bangert, `Minimal Measures and Minimizing Closed Normal One-Currents´, GAFA 9, (1999), 413-427.
[5] V. Bangert and M. Katz, `Stable Systolic Inequalities and Cohomology Products´, Comm. Pure Appl. Math. 56, (2003), 979-997.
[6] V. Bangert and M. Katz, `An Optimal Loewner-Type Systolic Inequality and Harmonic One-Forms of Constant Norm´, Comm. Anal. Geom. 12, 3 (2004), 703-732.
[7] H. Federer, `Real Flat Chains, Cochains and Variational Problems´, Indiana Univ. J. 86, (1964), 351-407.
[8] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, 1994.
[9] M. Jotz, `Hedlund Metrics and the Stable Norm´, Differential Geometry and its Applications 27, 4 (2009), 543-550.
[10] D. Massart, `Stable Norms of Surfaces: Local Structure of the Unit Ball at Rational Directions´, Geom. Funct. Anal. 7, (1997), 996-1010.
[11] R. Mañé, `On the Minimizing Measures of the Lagrangian Dynamical Systems´, Non Linearity 5, 3 (1992), 623-638.
[12] G. McShane and I. Rivin, `A Norm on Homology of Surface and Counting Simple Geodesic´, Int. Math. Res. Not. 2, (1995), 61-69.
[13] P. A. Nagy and C. Vernicos, `The Length of Harmonic Forms on a Compact Riemannian Manifold´, Trans. Amer. Math. Soc. 356, (2004), 2501-2513.
[14] O. Osuna, `Vertices of Mather's Beta Function´, Erg. Th. and Dyn. Syst. 25, (2005), 949-955.
[15] O. Osuna, `On the Stable Norm of Surfaces´, Bol. Soc. Mat. Mexicana 12, (2006), 75-80.
[16] G. Paternain, `Schrodinger Operators with Magnetic Fields and Minimal Action Functional´, Israel J. Math.123, (2001), 1-27.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv44n1a02,AUTHOR = {Osuna, Osvaldo},
TITLE = {{Rigidity of the Stable Norm on Tori}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2010},
volume = {44},
number = {1},
pages = {15-21}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2010 Revista Colombiana de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.