σ -Aditividad de conjuntos despreciables en espacios de Riesz
Keywords:
Espacio de Riesz, funciones, valores reales, σ -aditividad para conjuntos, teorema de Beppo-Levi, teoremas, espacio de integración, Riesz space, functions, actual values for sets σ-additivity, Beppo-Levi theorem, theorems, integration space (es)Riesz space, functions, actual values for sets σ-additivity, Beppo-Levi theorem, theorems, integration space, Espacio de Riesz, funciones, valores reales, σ -aditividad para conjuntos, teorema de Beppo-Levi, teoremas, espacio de integración (en)
Downloads
Let μ be a positive measure on a Riesz space E of real-valued functions defined on a set X. In [2] the σ-additivity for negligible sets is derived from the. Beppo Levi theorem. In this paper it is shown that such property can be obtained without the participation of the general convergence theorems.
This result has been achieved by the introduction of the class M of μ -convenient functions, which proves a useful step between E and the integration space L. For the sake of brevity, the notion of measure has been suitably altered.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 1981 Revista Colombiana de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.