σ -Aditividad de conjuntos despreciables en espacios de Riesz
Mots-clés :
Espacio de Riesz, funciones, valores reales, σ -aditividad para conjuntos, teorema de Beppo-Levi, teoremas, espacio de integración, Riesz space, functions, actual values for sets σ-additivity, Beppo-Levi theorem, theorems, integration space (es)Riesz space, functions, actual values for sets σ-additivity, Beppo-Levi theorem, theorems, integration space, Espacio de Riesz, funciones, valores reales, σ -aditividad para conjuntos, teorema de Beppo-Levi, teoremas, espacio de integración (en)
Téléchargements
Let μ be a positive measure on a Riesz space E of real-valued functions defined on a set X. In [2] the σ-additivity for negligible sets is derived from the. Beppo Levi theorem. In this paper it is shown that such property can be obtained without the participation of the general convergence theorems.
This result has been achieved by the introduction of the class M of μ -convenient functions, which proves a useful step between E and the integration space L. For the sake of brevity, the notion of measure has been suitably altered.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1981
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.