El retículo de las lógicas de primer orden con cuantificadores cardinales
Keywords:
Logic, cardinal characterization Boolean / Lógica, cardinales, caracterización booleana (es)Downloads
Associate to every class S of cardinals a quantifier QS so that QSx𝜙(x) holds just in case the number of individuals satisfying 𝜙(x) is a cardinal belonging to S. This includes the well know cardinal quantifiers Q∝. We give a simple combinatorial condition on the classes S and S' necessary and sufficient to have
Lωω (QS) ≤ Lωω (QS´).
A similar result is shown for logics generated by families of such quantifiers. Some applications follow; for example, it is shown that if nω denotes the set of multiples of the natural number n, then Lωω(Qnω) ≤ Lωω (Qmω) if and only if n divides m. Also, we construct infinite descending chains of logics.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 1986 Revista Colombiana de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.