El retículo de las lógicas de primer orden con cuantificadores cardinales
Mots-clés :
Logic, cardinal characterization Boolean / Lógica, cardinales, caracterización booleana (es)Téléchargements
Associate to every class S of cardinals a quantifier QS so that QSx𝜙(x) holds just in case the number of individuals satisfying 𝜙(x) is a cardinal belonging to S. This includes the well know cardinal quantifiers Q∝. We give a simple combinatorial condition on the classes S and S' necessary and sufficient to have
Lωω (QS) ≤ Lωω (QS´).
A similar result is shown for logics generated by families of such quantifiers. Some applications follow; for example, it is shown that if nω denotes the set of multiples of the natural number n, then Lωω(Qnω) ≤ Lωω (Qmω) if and only if n divides m. Also, we construct infinite descending chains of logics.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1986
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.