Vector valued chebechev systems
Schlagworte:
Unit interval, Banach space, functions, Chebechev systems (es)Downloads
Let I be the unit interval and X be a real Banach space. The space of continuous functions on I with values in X is denoted by C(I,X). The object of this paper is to introduce Chebechev systems in C(I,X) and study the basi.c properties of such systems, and its relation to interpolation. It is also proved that a subspace that is generated by a weak Chebechev system in C(I,X) is a Chebechev subspace.
Zitationsvorschlag
APA
Al-Zamel, A. und Khalil, R. (1989). Vector valued chebechev systems. Revista Colombiana de Matemáticas, 23(1-4), 25–33. https://revistas.unal.edu.co/index.php/recolma/article/view/33163
ACM
[1]
Al-Zamel, A. und Khalil, R. 1989. Vector valued chebechev systems. Revista Colombiana de Matemáticas. 23, 1-4 (Jan. 1989), 25–33.
ACS
(1)
Al-Zamel, A.; Khalil, R. Vector valued chebechev systems. rev.colomb.mat 1989, 23, 25-33.
ABNT
AL-ZAMEL, A.; KHALIL, R. Vector valued chebechev systems. Revista Colombiana de Matemáticas, [S. l.], v. 23, n. 1-4, p. 25–33, 1989. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33163. Acesso em: 5 apr. 2025.
Chicago
Al-Zamel, A., und R. Khalil. 1989. „Vector valued chebechev systems“. Revista Colombiana De Matemáticas 23 (1-4):25-33. https://revistas.unal.edu.co/index.php/recolma/article/view/33163.
Harvard
Al-Zamel, A. und Khalil, R. (1989) „Vector valued chebechev systems“, Revista Colombiana de Matemáticas, 23(1-4), S. 25–33. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33163 (Zugegriffen: 5 April 2025).
IEEE
[1]
A. Al-Zamel und R. Khalil, „Vector valued chebechev systems“, rev.colomb.mat, Bd. 23, Nr. 1-4, S. 25–33, Jan. 1989.
MLA
Al-Zamel, A., und R. Khalil. „Vector valued chebechev systems“. Revista Colombiana de Matemáticas, Bd. 23, Nr. 1-4, Januar 1989, S. 25-33, https://revistas.unal.edu.co/index.php/recolma/article/view/33163.
Turabian
Al-Zamel, A., und R. Khalil. „Vector valued chebechev systems“. Revista Colombiana de Matemáticas 23, no. 1-4 (Januar 1, 1989): 25–33. Zugegriffen April 5, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33163.
Vancouver
1.
Al-Zamel A, Khalil R. Vector valued chebechev systems. rev.colomb.mat [Internet]. 1. Januar 1989 [zitiert 5. April 2025];23(1-4):25-33. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33163
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
120
Downloads
Lizenz
Copyright (c) 1989 Revista Colombiana de Matemáticas

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.