Published

1991-01-01

The optimum shape of an hydrofoil with no cavitation

Keywords:


Hydrofoil, plane, uniform steam flow, infinite line theory, standard techniques, variational calculus, differential equation, Rayleigh-Ritz method, optimum values (es)

Authors

  • A. Y. Al-Hawaj University of Bahrain
  • A. H. Essawy University of Bahrain

We consider a two-dimensional hydrofoil at rest in the (xy)-plane embedded in a steam with a uniform flow at infinity and we pose the problem of finding the optimum shape of the hydrofoil of a given length and prescribed mean curvature for which the lift is a maximum. Using the lifting line theory and standard variational calculus techniques we show that the slope of the mean chord of the hydrofoil has to satisfy a differential equation of the second order. The Rayleigh-Ritz method is used to solve the second order differential equation which gives the optimal values.

How to Cite

APA

Al-Hawaj, A. Y. and Essawy, A. H. (1991). The optimum shape of an hydrofoil with no cavitation. Revista Colombiana de Matemáticas, 25(1-4), 103–122. https://revistas.unal.edu.co/index.php/recolma/article/view/33410

ACM

[1]
Al-Hawaj, A.Y. and Essawy, A.H. 1991. The optimum shape of an hydrofoil with no cavitation. Revista Colombiana de Matemáticas. 25, 1-4 (Jan. 1991), 103–122.

ACS

(1)
Al-Hawaj, A. Y.; Essawy, A. H. The optimum shape of an hydrofoil with no cavitation. rev.colomb.mat 1991, 25, 103-122.

ABNT

AL-HAWAJ, A. Y.; ESSAWY, A. H. The optimum shape of an hydrofoil with no cavitation. Revista Colombiana de Matemáticas, [S. l.], v. 25, n. 1-4, p. 103–122, 1991. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33410. Acesso em: 22 jan. 2025.

Chicago

Al-Hawaj, A. Y., and A. H. Essawy. 1991. “The optimum shape of an hydrofoil with no cavitation”. Revista Colombiana De Matemáticas 25 (1-4):103-22. https://revistas.unal.edu.co/index.php/recolma/article/view/33410.

Harvard

Al-Hawaj, A. Y. and Essawy, A. H. (1991) “The optimum shape of an hydrofoil with no cavitation”, Revista Colombiana de Matemáticas, 25(1-4), pp. 103–122. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33410 (Accessed: 22 January 2025).

IEEE

[1]
A. Y. Al-Hawaj and A. H. Essawy, “The optimum shape of an hydrofoil with no cavitation”, rev.colomb.mat, vol. 25, no. 1-4, pp. 103–122, Jan. 1991.

MLA

Al-Hawaj, A. Y., and A. H. Essawy. “The optimum shape of an hydrofoil with no cavitation”. Revista Colombiana de Matemáticas, vol. 25, no. 1-4, Jan. 1991, pp. 103-22, https://revistas.unal.edu.co/index.php/recolma/article/view/33410.

Turabian

Al-Hawaj, A. Y., and A. H. Essawy. “The optimum shape of an hydrofoil with no cavitation”. Revista Colombiana de Matemáticas 25, no. 1-4 (January 1, 1991): 103–122. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33410.

Vancouver

1.
Al-Hawaj AY, Essawy AH. The optimum shape of an hydrofoil with no cavitation. rev.colomb.mat [Internet]. 1991 Jan. 1 [cited 2025 Jan. 22];25(1-4):103-22. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/33410

Download Citation

Article abstract page views

141

Downloads

Download data is not yet available.