The optimum shape of an hydrofoil with no cavitation
Mots-clés :
Hydrofoil, plane, uniform steam flow, infinite line theory, standard techniques, variational calculus, differential equation, Rayleigh-Ritz method, optimum values (es)
Téléchargements
We consider a two-dimensional hydrofoil at rest in the (xy)-plane embedded in a steam with a uniform flow at infinity and we pose the problem of finding the optimum shape of the hydrofoil of a given length and prescribed mean curvature for which the lift is a maximum. Using the lifting line theory and standard variational calculus techniques we show that the slope of the mean chord of the hydrofoil has to satisfy a differential equation of the second order. The Rayleigh-Ritz method is used to solve the second order differential equation which gives the optimal values.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1991
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.