Existencia de una solución débil entrópica para un sistema de tipo Keyfitz-Kranzer simétrico
Existence of Weak Entropy Solution for a Symmetric System of Keyfitz-Kranzer Type
Keywords:
Sistema de tipo Keyfitz-Kranzer, existencia, solución débil entrópica (es)System of Keyfitz-Kranzer type, Existence, Weak entropy solution (en)
1Universidad Nacional de Colombia, Bogotá, Colombia. Email: jchernandezri@unal.edu.co
We consider the Cauchy problem for a 2\times2 symmetric system of Keyfitz-Kranzer type with bounded measurable initial data. The existence of a weak entropy solution to this system is proved by using classical viscosity, an estimate in L1(R) related to one of the Riemann invariants and the div-curl lemma, but avoiding the use of Young measures.
Key words: System of Keyfitz-Kranzer type, Existence, Weak entropy solution.
2000 Mathematics Subject Classification: 35D05, 35L65.
Consideramos el problema de Cauchy para un sistema 2\times2 de tipo Keyfitz-Kranzer simétrico con valor inicial acotado y medible. La existencia de una solución débil entrópica para este sistema es probada mediante el uso de viscosidad clásica, una L1(R) estimativa relacionada con uno de los invariantes de Riemann y el lema del divergente-rotacional, pero evitando el uso de medidas de Young.
Palabras clave: Sistema de tipo Keyfitz-Kranzer, existencia, solución débil entrópica.
Texto completo disponible en PDF
References
[1] G. Q. Chen, 'Hyperbolic System of Conservation Laws with a Symmetry', Commun. PDE 16, (1991), 1461-1487.
[2] H. Freisthuhler, 'On the Cauchy Problem for a Class of Hyperbolic Systems of Conservation Laws', J. Diff. Eqs. 112, (1994), 170-178.
[3] F. James, Y. J. Peng, and B. Perthame, 'Kinetic Formulation for Chromatography and some other Hyperbolic Systems', J. Math. Pure Appl. 74, (1995), 367-385.
[4] A. Kearsley and A. Reiff, 'Existence of weak Solutions to a Class of Nonstrictly Hyperbolic Conservation laws with Non-Interacting Waves', Pacific J. of Math. 205, (2002), 153-170.
[5] B. Keyfitz and H. Kranzer, 'A System of Non-Strictly Hyperbolic Conservation laws Arising in Elasticity', Arch. Rat. Mech. Anal. 72, (1980), 219-241.
[6] P. D. Lax, Hyperbolic Systems of Conservation laws and the Mathematical Theory of Shock Waves, CBMS Regional Conf. Ser. Appl. Math., 11 SIAM, 1973.
[7] T. P. Liu and J. H. Wang, 'On a Hyperbolic System of Conservation laws which is not Strictly Hyperbolic', J. Diff. Eqs. 57, (1985), 1-14.
[8] Y. G. Lu, Hyperbolic Conservations Laws and the Compensated Compactness Method, Chapman and Hall, New York, USA, 2002.
[9] Y. G. Lu, 'Some Results on General System of Isentropic Gas Dynamics', Differential Equations 43, (2007), 130-138.
[10] F. Murat, 'L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q<2', J. Math. Pures Appl. 60, (1981), 309-322.
[11] H. F. Neto, Compacidade compensada aplicada ás leis de conservação, Instituto De Matemática Pura E Aplicada, 1993.
[12] E. Y. Panov, 'On the Theory of Generalized Entropy Solutions of the Cauchy Problem for a Class of Non-Strictly Hyperbolic Systems of Conservation Laws', Sbornik: Mathematics 191, (2000), 121-150.
[13] E. Y. Panov, 'On Infinite-Dimensional Keyfitz-Kranzer Systems of Conservation Laws', Differential Equations 45, (2009), 274-278.
[14] Yue-Jun Peng, 'Euler-Lagrange Change of Variables in Conservation Laws and Applications', Nonlinearity 20, (2007), 1927-1953.
[15] R. J. D. Perna, 'Convergence of the Viscosity Method for Isentropic Gas Dynamics', Comm. Math. Phys. 91, (1983), 1-30.
[16] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford University Press, 2002.
[17] M. Rascle, 'Un résultat de compacité par compensation a coefficients variables', Note aux CRAS Paris 308, (1986), 311-314.
[18] D. Serre, 'Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation', J. Diff. Eqs. 68, (1987), 137-168.
[19] L. Tartar, 'The Compensated Compactness Method Applied to Systems of Conservation Laws', J. M. Ball ed., Systems of Nonlinear P. D. E., (1986), 263-285.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv47n1a02,
AUTHOR = {Hernández R., Juan Carlos},
TITLE = {{Existence of Weak Entropy Solution for a Symmetric System of Keyfitz-Kranzer Type}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2013},
volume = {47},
number = {1},
pages = {13--28}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2013 Revista Colombiana de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.