Published

2015-01-01

Flujos seccionales Anosov en dimensiones superiores

Sectional-Anosov Flows in Higher Dimensions

DOI:

https://doi.org/10.15446/recolma.v49n1.54162

Keywords:

Transitivo, Maximal invariante, Flujo seccional-Anosov (es)
Transitive, Maximal invariant, Sectional-Anosov flow (en)

Authors

  • Andrés Mauricio López Universidade Federal do Rio de Janeiro
Un flujo seccional-Anosov sobre una variedad es un C1 campo vectorial transversal a la frontera apuntando hacia el interior, para el cual su conjunto maximal invariante es un conjunto seccional hiperbólico [10]. Probamos
que todo atractor de todo campo vectorial C1 próximo a un fl
ujo seccional-
Anosov transitivo con singularidades sobre una variedad compacta tiene una
singularidad. Este resultado extiende el resultado tres-dimensional obtenido
en [9].
A sectional-Anosov
flow on a manifold is a C1 vector field inwardly
transverse to the boundary for which the maximal invariant is sectional hy-
perbolic [10]. We prove that every attractor of every vector field C1 close to a
transitive sectional-Anosov
ow with singularities on a compact manifold has
a singularity. This extends the three-dimensional result obtained in [9].

Sectional-Anosov Flows in Higher Dimensions

Flujos seccionales Anosov en dimensiones superiores

ANDRÉS MAURICIO LÓPEZ1

1Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Email: barragan@im.ufrj.br


Abstract

A sectional-Anosov flow on a manifold is a C1 vector field inwardly transverse to the boundary for which the maximal invariant is sectional hyperbolic [10]. We prove that every attractor of every vector field C1 close to a transitive sectional-Anosov flow with singularities on a compact manifold has a singularity. This extends the three-dimensional result obtained in [9].

Key words: Transitive, Maximal invariant, Sectional-Anosov flow.


2000 Mathematics Subject Classification: 53C21, 53C42.

Resumen

Un flujo seccional-Anosov sobre una variedad es un C1 campo vectorial transversal a la frontera apuntando hacia el interior, para el cual su conjunto maximal invariante es un conjunto seccional hiperbólico [10]. Probamos que todo atractor de todo campo vectorial C1 próximo a un flujo seccional-Anosov transitivo con singularidades sobre una variedad compacta tiene una singularidad. Este resultado extiende el resultado tres-dimensional obtenido en [9].

Palabras clave: Transitivo, maximal invariante, flujo seccional-Anosov.


Texto completo disponible en PDF


References

[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, `On Structurally Unstable Attracting Limit Sets of Lorenz Attractor Type´, Trudy Moskov. Mat. Obshch. 44, 2 (1982), 150-212.

[2] V. Araújo and M. J. Pacífico, Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge. a series of modern surveys in mathematics, `Three-dimensional flows.´, 2010, Vol. 53, Springer.

[3] A. Arbieto, C. A. Morales, and L. Senos, `On the Sensitivity of Sectional-Anosov Flows´, Mathematische Zeitschrift 270, 1-2 (2012), 545-557.

[4] S. Bautista and C. A. Morales, Lectures on Sectional-Anosov Flows, http://preprint.impa.br/Shadows/SERIE_D/2011/86.html, 0000.

[5] C. Bonatti, A. Pumariño, and M. Viana, `Lorenz Attractors with Arbitrary Expanding Dimension´, C. R. Acad. Sci. Paris Sér. I Math. 325, 8 (1997), 883-888.

[6] C. I. Doering, `Persistently Transitive Vector Fields on Three-Dimensional Manifolds´, Dynamical Systems and Bifurcation Theory (Rio de Janeiro, 1985), Pitman Res. Notes Math. Ser. 160, (1987), 59-89.

[7] J. Guckenheimer and R. F. Williams, `Structural Stability of Lorenz Attractors´, Publications Mathématiques de l'IHÉS 50, 1 (1979), 59-72.

[8] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Vol. 583, Springer Berlin, 1977.

[9] C. A. Morales, `The Explosion of Singular-Hyperbolic Attractors´, Ergodic Theory and Dynamical Systems 24, 2 (2004), 577-591.

[10] C. A. Morales, `Sectional-Anosov Flows´, Monatshefte für Mathematik 159, 3 (2010), 253-260.

[11] C. A. Morales, M. J. Pacífico, and E. R. Pujals, `Singular Hyperbolic Systems´, Proceedings of the American Mathematical Society 127, 11 (1999), 3393-3401.

[12] J. Palis and W. De Melo, Geometric Theory of Dynamical Systems, Springer, 1982.

[13] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors in Dynamics, Cambridge University Press, 1993.


(Recibido en agosto de 2013. Aceptado en noviembre de 2014)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv49n1a02,
    AUTHOR  = {López, Andrés Mauricio},
    TITLE   = {{Sectional-Anosov Flows in Higher Dimensions}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2015},
    volume  = {49},
    number  = {1},
    pages   = {39--55}
}

How to Cite

APA

López, A. M. (2015). Flujos seccionales Anosov en dimensiones superiores. Revista Colombiana de Matemáticas, 49(1), 39–55. https://doi.org/10.15446/recolma.v49n1.54162

ACM

[1]
López, A.M. 2015. Flujos seccionales Anosov en dimensiones superiores. Revista Colombiana de Matemáticas. 49, 1 (Jan. 2015), 39–55. DOI:https://doi.org/10.15446/recolma.v49n1.54162.

ACS

(1)
López, A. M. Flujos seccionales Anosov en dimensiones superiores. rev.colomb.mat 2015, 49, 39-55.

ABNT

LÓPEZ, A. M. Flujos seccionales Anosov en dimensiones superiores. Revista Colombiana de Matemáticas, [S. l.], v. 49, n. 1, p. 39–55, 2015. DOI: 10.15446/recolma.v49n1.54162. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/54162. Acesso em: 22 jan. 2025.

Chicago

López, Andrés Mauricio. 2015. “Flujos seccionales Anosov en dimensiones superiores”. Revista Colombiana De Matemáticas 49 (1):39-55. https://doi.org/10.15446/recolma.v49n1.54162.

Harvard

López, A. M. (2015) “Flujos seccionales Anosov en dimensiones superiores”, Revista Colombiana de Matemáticas, 49(1), pp. 39–55. doi: 10.15446/recolma.v49n1.54162.

IEEE

[1]
A. M. López, “Flujos seccionales Anosov en dimensiones superiores”, rev.colomb.mat, vol. 49, no. 1, pp. 39–55, Jan. 2015.

MLA

López, A. M. “Flujos seccionales Anosov en dimensiones superiores”. Revista Colombiana de Matemáticas, vol. 49, no. 1, Jan. 2015, pp. 39-55, doi:10.15446/recolma.v49n1.54162.

Turabian

López, Andrés Mauricio. “Flujos seccionales Anosov en dimensiones superiores”. Revista Colombiana de Matemáticas 49, no. 1 (January 1, 2015): 39–55. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/54162.

Vancouver

1.
López AM. Flujos seccionales Anosov en dimensiones superiores. rev.colomb.mat [Internet]. 2015 Jan. 1 [cited 2025 Jan. 22];49(1):39-55. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/54162

Download Citation

CrossRef Cited-by

CrossRef citations2

1. A. M. López. (2017). Finiteness and existence of attractors and repellers on sectional hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 37(1), p.337. https://doi.org/10.3934/dcds.2017014.

2. A. Arbieto, C. A. Morales, B. Santiago. (2015). Lyapunov stability and sectional-hyperbolicity for higher-dimensional flows. Mathematische Annalen, 361(1-2), p.67. https://doi.org/10.1007/s00208-014-1061-3.

Dimensions

PlumX

Article abstract page views

547

Downloads

Download data is not yet available.