Publié-e
Flujos seccionales Anosov en dimensiones superiores
Sectional-Anosov Flows in Higher Dimensions
DOI :
https://doi.org/10.15446/recolma.v49n1.54162Mots-clés :
Transitivo, Maximal invariante, Flujo seccional-Anosov (es)Transitive, Maximal invariant, Sectional-Anosov flow (en)
Téléchargements
que todo atractor de todo campo vectorial C1 próximo a un fl
ujo seccional-
Anosov transitivo con singularidades sobre una variedad compacta tiene una
singularidad. Este resultado extiende el resultado tres-dimensional obtenido
en [9].
flow on a manifold is a C1 vector field inwardly
transverse to the boundary for which the maximal invariant is sectional hy-
perbolic [10]. We prove that every attractor of every vector field C1 close to a
transitive sectional-Anosov
ow with singularities on a compact manifold has
a singularity. This extends the three-dimensional result obtained in [9].
1Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Email: barragan@im.ufrj.br
A sectional-Anosov flow on a manifold is a C1 vector field inwardly transverse to the boundary for which the maximal invariant is sectional hyperbolic [10]. We prove that every attractor of every vector field C1 close to a transitive sectional-Anosov flow with singularities on a compact manifold has a singularity. This extends the three-dimensional result obtained in [9].
Key words: Transitive, Maximal invariant, Sectional-Anosov flow.
2000 Mathematics Subject Classification: 53C21, 53C42.
Un flujo seccional-Anosov sobre una variedad es un C1 campo vectorial transversal a la frontera apuntando hacia el interior, para el cual su conjunto maximal invariante es un conjunto seccional hiperbólico [10]. Probamos que todo atractor de todo campo vectorial C1 próximo a un flujo seccional-Anosov transitivo con singularidades sobre una variedad compacta tiene una singularidad. Este resultado extiende el resultado tres-dimensional obtenido en [9].
Palabras clave: Transitivo, maximal invariante, flujo seccional-Anosov.
Texto completo disponible en PDF
References
[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, `On Structurally Unstable Attracting Limit Sets of Lorenz Attractor Type´, Trudy Moskov. Mat. Obshch. 44, 2 (1982), 150-212.
[2] V. Araújo and M. J. Pacífico, Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge. a series of modern surveys in mathematics, `Three-dimensional flows.´, 2010, Vol. 53, Springer.
[3] A. Arbieto, C. A. Morales, and L. Senos, `On the Sensitivity of Sectional-Anosov Flows´, Mathematische Zeitschrift 270, 1-2 (2012), 545-557.
[4] S. Bautista and C. A. Morales, Lectures on Sectional-Anosov Flows, http://preprint.impa.br/Shadows/SERIE_D/2011/86.html, 0000.
[5] C. Bonatti, A. Pumariño, and M. Viana, `Lorenz Attractors with Arbitrary Expanding Dimension´, C. R. Acad. Sci. Paris Sér. I Math. 325, 8 (1997), 883-888.
[6] C. I. Doering, `Persistently Transitive Vector Fields on Three-Dimensional Manifolds´, Dynamical Systems and Bifurcation Theory (Rio de Janeiro, 1985), Pitman Res. Notes Math. Ser. 160, (1987), 59-89.
[7] J. Guckenheimer and R. F. Williams, `Structural Stability of Lorenz Attractors´, Publications Mathématiques de l'IHÉS 50, 1 (1979), 59-72.
[8] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Vol. 583, Springer Berlin, 1977.
[9] C. A. Morales, `The Explosion of Singular-Hyperbolic Attractors´, Ergodic Theory and Dynamical Systems 24, 2 (2004), 577-591.
[10] C. A. Morales, `Sectional-Anosov Flows´, Monatshefte für Mathematik 159, 3 (2010), 253-260.
[11] C. A. Morales, M. J. Pacífico, and E. R. Pujals, `Singular Hyperbolic Systems´, Proceedings of the American Mathematical Society 127, 11 (1999), 3393-3401.
[12] J. Palis and W. De Melo, Geometric Theory of Dynamical Systems, Springer, 1982.
[13] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors in Dynamics, Cambridge University Press, 1993.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv49n1a02,
AUTHOR = {López, Andrés Mauricio},
TITLE = {{Sectional-Anosov Flows in Higher Dimensions}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2015},
volume = {49},
number = {1},
pages = {39--55}
}
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
CrossRef Cited-by
1. A. M. López. (2017). Finiteness and existence of attractors and repellers on sectional hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 37(1), p.337. https://doi.org/10.3934/dcds.2017014.
2. A. Arbieto, C. A. Morales, B. Santiago. (2015). Lyapunov stability and sectional-hyperbolicity for higher-dimensional flows. Mathematische Annalen, 361(1-2), p.67. https://doi.org/10.1007/s00208-014-1061-3.
Dimensions
PlumX
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 2015
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.