Published

2006-07-01

Palindromic powers

Keywords:

Palindromes, Applications of Baker’s method, Discrepancy, 2000 Mathematics Subject Classification, Primary: 11D75, Secondary: 11J25, 11J71, 11J86. (en)

Downloads

Authors

  • Universidad Nacional Autónoma de México, México D. F.
  • Pontificia Universidad Católica de Chile, Santiago

Abstract. In this paper, given an integer a > 1, we look at the smallest exponent n such that an is not a palindrome.

En este artículo, dado un entero a > 1, nosotros estudiamos el menor exponente n tal que an no sea palíndromo.

References

W. D. Banks, D. N. Hart & M. Sakata, Almost all palindromes are composite, Math. Res. Lett. 11 (2004), 853-868.

M. Harminic & R. Sotak, Palindromic numbers in arithmetic progressions, Fibonacci Quart. 36 (1998), 259-261.

I. Korec, Palindromic squares for various number system bases, Math. Slovaca 41 (1991), 261-276.

L. Kuipers & H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, New-York, 1974.

F. Luca, Palindromes in Lucas sequences, Monatsh. Math. 138 (2003), 209-223.

E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk. Ser. Math. 64 (2000), 125-180; English translation Izv. Math. 64 (2000), 1217-1269.

J. Rivat & G. Tenenbaum, Constantes d’Erdös-Turán, Ramanujan J. 9 (2005), 111- 121.

How to Cite

APA

Florian and Santos. (2006). Palindromic powers. Revista Colombiana de Matemáticas, 40(2), 81–86. https://revistas.unal.edu.co/index.php/recolma/article/view/94705

ACM

[1]
Florian and Santos 2006. Palindromic powers. Revista Colombiana de Matemáticas. 40, 2 (Jul. 2006), 81–86.

ACS

(1)
Florian; Santos. Palindromic powers. rev.colomb.mat 2006, 40, 81-86.

ABNT

FLORIAN; SANTOS. Palindromic powers. Revista Colombiana de Matemáticas, [S. l.], v. 40, n. 2, p. 81–86, 2006. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94705. Acesso em: 22 jan. 2025.

Chicago

Florian, and Santos. 2006. “Palindromic powers”. Revista Colombiana De Matemáticas 40 (2):81-86. https://revistas.unal.edu.co/index.php/recolma/article/view/94705.

Harvard

Florian and Santos (2006) “Palindromic powers”, Revista Colombiana de Matemáticas, 40(2), pp. 81–86. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/94705 (Accessed: 22 January 2025).

IEEE

[1]
Florian and Santos, “Palindromic powers”, rev.colomb.mat, vol. 40, no. 2, pp. 81–86, Jul. 2006.

MLA

Florian, and Santos. “Palindromic powers”. Revista Colombiana de Matemáticas, vol. 40, no. 2, July 2006, pp. 81-86, https://revistas.unal.edu.co/index.php/recolma/article/view/94705.

Turabian

Florian, and Santos. “Palindromic powers”. Revista Colombiana de Matemáticas 40, no. 2 (July 1, 2006): 81–86. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94705.

Vancouver

1.
Florian, Santos. Palindromic powers. rev.colomb.mat [Internet]. 2006 Jul. 1 [cited 2025 Jan. 22];40(2):81-6. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/94705

Download Citation

Article abstract page views

28

Downloads

Download data is not yet available.