Palindromic powers
Mots-clés :
Palindromes, Applications of Baker’s method, Discrepancy, 2000 Mathematics Subject Classification, Primary: 11D75, Secondary: 11J25, 11J71, 11J86. (en)Téléchargements
Abstract. In this paper, given an integer a > 1, we look at the smallest exponent n such that an is not a palindrome.
En este artículo, dado un entero a > 1, nosotros estudiamos el menor exponente n tal que an no sea palíndromo.
Références
W. D. Banks, D. N. Hart & M. Sakata, Almost all palindromes are composite, Math. Res. Lett. 11 (2004), 853-868.
M. Harminic & R. Sotak, Palindromic numbers in arithmetic progressions, Fibonacci Quart. 36 (1998), 259-261.
I. Korec, Palindromic squares for various number system bases, Math. Slovaca 41 (1991), 261-276.
L. Kuipers & H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, New-York, 1974.
F. Luca, Palindromes in Lucas sequences, Monatsh. Math. 138 (2003), 209-223.
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk. Ser. Math. 64 (2000), 125-180; English translation Izv. Math. 64 (2000), 1217-1269.
J. Rivat & G. Tenenbaum, Constantes d’Erdös-Turán, Ramanujan J. 9 (2005), 111- 121.