Nonderogatory directed windmills
Molinos de viento dirigidos no derogatorios
Keywords:
Nonderogatory matrix, characteristic polynomial of directed graphs, directed windmills, 2000 Mathematics Subject Classification. 05C50 (en)matriz no-derogatoria, polinomio característico de grafos dirigidos, molinos de viento dirigidos (es)
Downloads
Abstract. A directed graph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., the characteristic polynomial of A is equal to the minimal polynomial of A. Given integers r ≥ 2 and h ≥ 3, a directed windmill Mh (r) is a directed graph obtained by coalescing r dicycles of length h in one vertex. In this article we solve a conjecture proposed by Gan and Koo ([3]): Mh (r) is nonderogatory if and only if r = 2.
Un grafo dirigido G es no-derogatorio si su matriz de adyacencia A es no-derogatoria, es decir el polinomio característico de A es igual al polinomio minimal de A. Dados enteros r ≥ 2 and h ≥ 3, el molino de viento dirigido Mh (r) es un grafo dirigido que se obtiene por medio de la coalescencia de r diciclos de longitud h en un vértice. En este artículo resolvemos una conjetura propuesta por Gan y Koo ([3]) : Mh (r) es no-derogatorio si, y sólo si, r = 2. Palabras y frases clave, matriz no-derogatoria, polinomio característico de grafos dirigidos, molinos de viento dirigidos.
References
Cvetković, D., Doob, M., and Sachs, H. Spectra of graphs. Academic Press, New York, 1980.
Gan, C. Some results on annihilatingly unique digraphs. M.Sc. Thesis, Univesity of Malaya, 1995. Kuala Lumpur, Malaysia.
Gan, C., and Koo, V. On annihilating uniqueness of directed windmills. In Proceedings of the ATCM (2002), ATCM. Melaka, Malaysia.
Lam, K. On digraphs with unique annihilating polynomial Ph.D. Thesis, University of Malaya, 1990. Kuala Lumpur, Malaysia.
Lam, K., and Lim, G. The characteristic polynomial of ladder digraph and an annihilating uniqueness theorem . Discrete Mathematics 151 (1996), 161-167.