Publicado
On the space-time admitting some geometric structures on energy-momentum tensors
Sobre el espacio-tiempo admitiendo algunas estructuras geométricas en tensores de energía-momento
DOI:
https://doi.org/10.15446/recolma.v51n2.70904Palabras clave:
General relativistic perfect fluid space-time, Einstein's field equation, energy-momentum tensor, semi-symmetric energy-momentum tensor (en)Espacio-tiempo fluido general relativista perfecto, campo de Einstein, tensor energía-momento, tensor semi-simétrico de energía-momento (es)
Descargas
Referencias
Z. Ahsan, On a geometrical symmetry of the spacetime of genearal relativity, Bull. Cal. Math. Soc. 97 (2005), no. 3, 191-200.
R. Aikawa and Y. Matsuyama, On the local symmetry of Kaehler hyper-
surfaces, Yokohoma Math. J. 51 (2005), 63-73.
L. Amendola and S. Tsujikawa, Dark energy: theory and observations,
Cambridge University Press, 2010.
K. K. Baishya and P. Roy Chowdhury, On generalized quasi-conformal
n(k; u)-manifolds, Commun. Korean Math. Soc. 31 (2016), no. 1, 163-176.
M. C. Chaki and S. Roy, Spacetimes with covariant-constant energy-
momentum tensor, Internat. J. Theoret. Phys. 35 (1996), 1027-1032.
S. Chakraborty, N. Mazumder, and R. Biswas, Cosmological evolution
across phantom crossing and the nature of the horizon, Astrophys. Space
Sci. 334 (2011), 183-186.
U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-
momentum tensor, Internat. J. Theoret. Phys. 54 (2015), 17791783.
K. L. Duggal, Space time manifolds and contact structures, Int. J. Math.
Math. Sci. 13 (1990), 545-554.
L. P. Eisenhart, Riemannian geometry, Princeton University Press, 1949.
Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73-80.
B. O'Neill, Semi-Riemannian geometry, Academic Press Inc, New York,
G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J. 18 (1970), 105-108.
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein's field equations, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 2003.
Z. I. Szabó, Structure theorems on Riemannian spaces satisfying r(x; y).
r = 0. i. the local version, J. Differential Geom. 17 (1982), 531-582.
K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal
transformation group, J. Differential Geom. 2 (1968), 161-184.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2017 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.