Publié-e
On the space-time admitting some geometric structures on energy-momentum tensors
Sobre el espacio-tiempo admitiendo algunas estructuras geométricas en tensores de energía-momento
DOI :
https://doi.org/10.15446/recolma.v51n2.70904Mots-clés :
General relativistic perfect fluid space-time, Einstein's field equation, energy-momentum tensor, semi-symmetric energy-momentum tensor (en)Espacio-tiempo fluido general relativista perfecto, campo de Einstein, tensor energía-momento, tensor semi-simétrico de energía-momento (es)
Téléchargements
Références
Z. Ahsan, On a geometrical symmetry of the spacetime of genearal relativity, Bull. Cal. Math. Soc. 97 (2005), no. 3, 191-200.
R. Aikawa and Y. Matsuyama, On the local symmetry of Kaehler hyper-
surfaces, Yokohoma Math. J. 51 (2005), 63-73.
L. Amendola and S. Tsujikawa, Dark energy: theory and observations,
Cambridge University Press, 2010.
K. K. Baishya and P. Roy Chowdhury, On generalized quasi-conformal
n(k; u)-manifolds, Commun. Korean Math. Soc. 31 (2016), no. 1, 163-176.
M. C. Chaki and S. Roy, Spacetimes with covariant-constant energy-
momentum tensor, Internat. J. Theoret. Phys. 35 (1996), 1027-1032.
S. Chakraborty, N. Mazumder, and R. Biswas, Cosmological evolution
across phantom crossing and the nature of the horizon, Astrophys. Space
Sci. 334 (2011), 183-186.
U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-
momentum tensor, Internat. J. Theoret. Phys. 54 (2015), 17791783.
K. L. Duggal, Space time manifolds and contact structures, Int. J. Math.
Math. Sci. 13 (1990), 545-554.
L. P. Eisenhart, Riemannian geometry, Princeton University Press, 1949.
Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73-80.
B. O'Neill, Semi-Riemannian geometry, Academic Press Inc, New York,
G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J. 18 (1970), 105-108.
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein's field equations, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 2003.
Z. I. Szabó, Structure theorems on Riemannian spaces satisfying r(x; y).
r = 0. i. the local version, J. Differential Geom. 17 (1982), 531-582.
K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal
transformation group, J. Differential Geom. 2 (1968), 161-184.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Licence
© Revista Colombiana de Matemáticas 2017
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.