Publicado
Deducing Three Gap Theorem from Rauzy-Veech induction
Deduciendo el teorema de las tres brechas vía inducción Rauzy-Veech
DOI:
https://doi.org/10.15446/recolma.v54n1.89777Palabras clave:
Three Gap Theorem, Rauzy-Veech induction, Kronecker sequence, interval exchange transformation, uniform distribution (en)Teorema de las tres brechas, inducción Rauzy-Veech, sucesión de Kronecker, intercambio de intervalos, distribución uniforme (es)
Descargas
Referencias
P. Alessandri and V. Berthé, Three Distance Theorems and Combinatorics on Words, Enseign. Math. 44 (1998), 103-132.
M. Drmota and R. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer, Berlin (1997).
F. Liang, A short proof of the 3d distance theorem, Discrete Mathematics 28 (1979), no. 3, 325-326.
J. Marklof and A. Strömbergsson, The Three Gap Theorem and the Space of Lattices, American Monthly 124 (2017), 741-745.
V. Sós, On the distribution mod 1 of the sequence na, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 127-134.
D. Taha, The Three Gaps Theorem, Interval Exchange Transformations, and Zippered Rectangles, ArXiv: 1708.04380.
M. Viana, Ergodic Theory of Interval Exchange Maps, Rev. Mat. Complut 19 (2006), no. 1, 7-100.
J.-C. Yoccoz, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction in: Frontiers in number theory, physics, and geometry I, Springer (2006), 401-435.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Christian Weiß. (2022). Multi-dimensional Kronecker sequences with a small number of gap lengths. Discrete Mathematics and Applications, 32(1), p.69. https://doi.org/10.1515/dma-2022-0006.
2. Christian Weiß. (2023). Deviation from equidistance for one-dimensional sequences. Aequationes mathematicae, 97(4), p.683. https://doi.org/10.1007/s00010-023-00958-x.
3. Takashi Goda. (2024). One-dimensional quasi-uniform Kronecker sequences. Archiv der Mathematik, 123(5), p.499. https://doi.org/10.1007/s00013-024-02039-0.
4. Christian Weiß, Thomas Skill. (2022). Sequences with almost Poissonian pair correlations. Journal of Number Theory, 236, p.116. https://doi.org/10.1016/j.jnt.2021.07.011.
5. Christian Weiss. (2022). Systems of rank one, explicit Rokhlin towers, and covering numbers. Archiv der Mathematik, 118(2), p.181. https://doi.org/10.1007/s00013-021-01683-0.
6. Christian Weiß. (2022). Some connections between discrepancy, finite gap properties, and pair correlations. Monatshefte für Mathematik, 199(4), p.909. https://doi.org/10.1007/s00605-022-01742-w.
7. Christian Weiss. (2021). Многомерные последовательности Кронекера с малым числом длин промежутков. Дискретная математика, 33(4), p.11. https://doi.org/10.4213/dm1683.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.