Published

2020-01-01

Deducing Three Gap Theorem from Rauzy-Veech induction

Deduciendo el teorema de las tres brechas vía inducción Rauzy-Veech

DOI:

https://doi.org/10.15446/recolma.v54n1.89777

Keywords:

Three Gap Theorem, Rauzy-Veech induction, Kronecker sequence, interval exchange transformation, uniform distribution (en)
Teorema de las tres brechas, inducción Rauzy-Veech, sucesión de Kronecker, intercambio de intervalos, distribución uniforme (es)

Authors

  • Christian Weiss University of Applied Sciences
The Three Gap Theorem states that there are at most three distinct lengths of gaps if one places n points on a circle, at angles of z, 2z, … nz from the starting point. The theorem was first proven in 1958 by Sós and many proofs have been found since then. In this note we show how the Three Gap Theorem can easily be deduced by using Rauzy-Veech induction.
El teorema de las tres brechas indica que existen a lo sumo tres longitudes distintas de brechas si se sitúan n puntos en un círculo, en ángulos z, 2z, … nz a partir del punto inicial. El teorema se demostró primero en 1958 por Sós y muchas pruebas han sido encontradas desde entonces. En esta nota mostramos cómo el teorema de las tres brechas puede ser fácilmente deducido usando inducción de tipo Rauzy-Veech.

References

P. Alessandri and V. Berthé, Three Distance Theorems and Combinatorics on Words, Enseign. Math. 44 (1998), 103-132.

M. Drmota and R. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer, Berlin (1997).

F. Liang, A short proof of the 3d distance theorem, Discrete Mathematics 28 (1979), no. 3, 325-326.

J. Marklof and A. Strömbergsson, The Three Gap Theorem and the Space of Lattices, American Monthly 124 (2017), 741-745.

V. Sós, On the distribution mod 1 of the sequence na, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 127-134.

D. Taha, The Three Gaps Theorem, Interval Exchange Transformations, and Zippered Rectangles, ArXiv: 1708.04380.

M. Viana, Ergodic Theory of Interval Exchange Maps, Rev. Mat. Complut 19 (2006), no. 1, 7-100.

J.-C. Yoccoz, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction in: Frontiers in number theory, physics, and geometry I, Springer (2006), 401-435.

How to Cite

APA

Weiss, C. (2020). Deducing Three Gap Theorem from Rauzy-Veech induction. Revista Colombiana de Matemáticas, 54(1), 31–37. https://doi.org/10.15446/recolma.v54n1.89777

ACM

[1]
Weiss, C. 2020. Deducing Three Gap Theorem from Rauzy-Veech induction. Revista Colombiana de Matemáticas. 54, 1 (Jan. 2020), 31–37. DOI:https://doi.org/10.15446/recolma.v54n1.89777.

ACS

(1)
Weiss, C. Deducing Three Gap Theorem from Rauzy-Veech induction. rev.colomb.mat 2020, 54, 31-37.

ABNT

WEISS, C. Deducing Three Gap Theorem from Rauzy-Veech induction. Revista Colombiana de Matemáticas, [S. l.], v. 54, n. 1, p. 31–37, 2020. DOI: 10.15446/recolma.v54n1.89777. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/89777. Acesso em: 22 jan. 2025.

Chicago

Weiss, Christian. 2020. “Deducing Three Gap Theorem from Rauzy-Veech induction”. Revista Colombiana De Matemáticas 54 (1):31-37. https://doi.org/10.15446/recolma.v54n1.89777.

Harvard

Weiss, C. (2020) “Deducing Three Gap Theorem from Rauzy-Veech induction”, Revista Colombiana de Matemáticas, 54(1), pp. 31–37. doi: 10.15446/recolma.v54n1.89777.

IEEE

[1]
C. Weiss, “Deducing Three Gap Theorem from Rauzy-Veech induction”, rev.colomb.mat, vol. 54, no. 1, pp. 31–37, Jan. 2020.

MLA

Weiss, C. “Deducing Three Gap Theorem from Rauzy-Veech induction”. Revista Colombiana de Matemáticas, vol. 54, no. 1, Jan. 2020, pp. 31-37, doi:10.15446/recolma.v54n1.89777.

Turabian

Weiss, Christian. “Deducing Three Gap Theorem from Rauzy-Veech induction”. Revista Colombiana de Matemáticas 54, no. 1 (January 1, 2020): 31–37. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/89777.

Vancouver

1.
Weiss C. Deducing Three Gap Theorem from Rauzy-Veech induction. rev.colomb.mat [Internet]. 2020 Jan. 1 [cited 2025 Jan. 22];54(1):31-7. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/89777

Download Citation

CrossRef Cited-by

CrossRef citations7

1. Christian Weiß. (2022). Multi-dimensional Kronecker sequences with a small number of gap lengths. Discrete Mathematics and Applications, 32(1), p.69. https://doi.org/10.1515/dma-2022-0006.

2. Christian Weiß. (2023). Deviation from equidistance for one-dimensional sequences. Aequationes mathematicae, 97(4), p.683. https://doi.org/10.1007/s00010-023-00958-x.

3. Takashi Goda. (2024). One-dimensional quasi-uniform Kronecker sequences. Archiv der Mathematik, 123(5), p.499. https://doi.org/10.1007/s00013-024-02039-0.

4. Christian Weiß, Thomas Skill. (2022). Sequences with almost Poissonian pair correlations. Journal of Number Theory, 236, p.116. https://doi.org/10.1016/j.jnt.2021.07.011.

5. Christian Weiss. (2022). Systems of rank one, explicit Rokhlin towers, and covering numbers. Archiv der Mathematik, 118(2), p.181. https://doi.org/10.1007/s00013-021-01683-0.

6. Christian Weiß. (2022). Some connections between discrepancy, finite gap properties, and pair correlations. Monatshefte für Mathematik, 199(4), p.909. https://doi.org/10.1007/s00605-022-01742-w.

7. Christian Weiss. (2021). Многомерные последовательности Кронекера с малым числом длин промежутков. Дискретная математика, 33(4), p.11. https://doi.org/10.4213/dm1683.

Dimensions

PlumX

Article abstract page views

318

Downloads

Download data is not yet available.