On the orthogonality measure of the q-pollaczek polynomials
Mots-clés :
q-Pollaczek polynomials, orthogonal, Lebesgue's measure (es)
Téléchargements
The q-Pollaczek polynomials F ,(x) depend on four parameters u,v, ∆, q and are given by the recurrence relation (1-qn+1)Fn+1(x) = 2[(1-u∆qn)x+vqn]Fn(x)- (1-∆2qn-1)Fn-1 (x), n ≥ 1, and the initial cond i t i ons Fo(x)=1 F1(x) = 2 [(1-u∆)x+v]/1-q. The measure with respect to which the Fn(x)'s are orthogonal is determined when the parameters are subject to the constraints O<u<∆< 1, ∆(1-u) >±v, 0 < q < 1. This measure turns out to be absolutelv continuous with respect to Lebesgue's measure.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1987
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.