On the orthogonality measure of the q-pollaczek polynomials
Parole chiave:
q-Pollaczek polynomials, orthogonal, Lebesgue's measure (es)
##submission.downloads##
The q-Pollaczek polynomials F ,(x) depend on four parameters u,v, ∆, q and are given by the recurrence relation (1-qn+1)Fn+1(x) = 2[(1-u∆qn)x+vqn]Fn(x)- (1-∆2qn-1)Fn-1 (x), n ≥ 1, and the initial cond i t i ons Fo(x)=1 F1(x) = 2 [(1-u∆)x+v]/1-q. The measure with respect to which the Fn(x)'s are orthogonal is determined when the parameters are subject to the constraints O<u<∆< 1, ∆(1-u) >±v, 0 < q < 1. This measure turns out to be absolutelv continuous with respect to Lebesgue's measure.
Come citare
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Scarica citazione
Viste delle pagine degli abstract
Downloads
Licenza
Copyright (c) 1987 Revista Colombiana de Matemáticas
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.