Publié-e

2018-01-01

Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Dos posets de particiones sin cruces provenientes de espacios de parqueo prohibidos

DOI :

https://doi.org/10.15446/recolma.v1n52.74562

Mots-clés :

noncrossing partition, supersolvable lattice, left-modular lattice, parking function, lexicographic shellability, NBB base, Möbius function (en)
Particiones sin cruces, retículo supersoluble, retículo modular izquierdo, funciones de parqueo, descascarabilidad lexicográfica, bases NBB, función Möbius (es)

Téléchargements

Auteurs-es

  • Henri Mühle Technische Universität Dresden
Consider the noncrossing set partitions of an n-element set which, either do not use the block {n - 1, n} or which do not use both the singleton block {n} and a block containing 1 and n - 1. In this article we study the subposet of the noncrossing partition lattice induced by these elements, and show that it is a supersolvable lattice, and therefore lexicographically shellable. We give a combinatorial model for the NBB bases of this lattice and derive an explicit formula for the value of its Möbius function between least and greatest element.
This work is motivated by a recent article by M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, and I. Nicolas, in which they introduce a subposet of the noncrossing partition lattice that is determined by parking functions with certain forbidden entries. In particular, they conjecture that the resulting poset always has a contractible order complex. We prove this conjecture by embedding their poset into ours, and showing that it inherits the lexicographic shellability.
Considere las particiones sin cruces de un conjunto de n elementos que no usan el bloque {n - 1, n}, ni usan a la vez el bloque {n} y un bloque que contenga a 1 y n - 1. En este artículo estudiamos el subposet del retículo de particiones sin cruces inducido por estos elementos. Probamos que este retículo es supersoluble, y por lo tanto es lexicogríaficamente descascarable. También damos un modelo combinatorio de las bases NBB de este retículo y derivamos una fórmula explicita para el valor de su función de Möbius entre el elemento mínimo y el máximo.
Este trabajo es motivado por un artículo reciente de M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, e I. Nicolas en el cual introducen un subposet del retículo de particiones sin cruces que es determinado por funciones de parqueo con ciertas entradas prohibidas. En particular, ellos conjeturan que el poset resultante siempre tiene un complejo de orden contráctil. En este artículo probamos esta conjetura, sumergiendo su poset en el nuestro y mostrando que esta inmersión hereda la descascarabilidad lexicográfica.

Références

A. Björner, Shellable and Cohen-Macaulay Partially Ordered Sets, Transactions of the American Mathematical Society 260 (1980), 159-183.

A. Björner and M. L.Wachs, Shellable and Nonpure Complexes and Posets I, Transactions of the American Mathematical Society 348 (1996), 1299-1327.

A. Blass and B. E. Sagan, Möbius Functions of Lattices, Advances in Mathematics 127 (1997), 94-123.

M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, and I. Nicolas, A Decomposition of Parking Functions by Undesired Spaces, The Electronic Journal of Combinatorics 23 (2016).

J. Haglund, The q; t-Catalan Numbers and the Space of Diagonal Harmonics, American Mathematical Society, Providence, RI, 2008.

M. Haiman, Conjectures on the Quotient Ring by Diagonal Invariants,

Journal of Algebraic Combinatorics 3 (1994), 17-76.

P. Hersh, Decomposition and Enumeration in Partially Ordered Sets, Ph.d. thesis, 1999.

A. G. Konheim and B. Weiss, An Occupancy Discipline and Applications,

SIAM Journal on Applied Mathematics 14 (1966), 1266-1274.

G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Mathematics 1 (1972), 333-350.

S.-C. Liu, Left-Modular Elements and Edge-Labellings, Ph.d. thesis, 1999.

J. McCammond, Noncrossing Partitions in Surprising Locations, American Mathematical Monthly 113 (2006), 598-610.

P. McNamara and H. Thomas, Poset Edge-Labellings and Left Modularity, European Journal of Combinatorics 27 (2006), 101-113.

J. A. Segner, Enumeratio Modorum quibus Figurae Planae Rectilineae per Diagonales Dividuntur in Triangula, Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae VII (1761), 203-210.

R. Simion, Noncrossing Partitions, Discrete Mathematics 217 (2000), 397-409.

N. J. A. Sloane, The Online Encyclopedia of Integer Sequences,

http://www.oeis.org.

R. P. Stanley, Supersolvable Lattices, Algebra Universalis 2 (1972), 197-217.

R. P. Stanley, Parking Functions and Noncrossing Partitions, The Electronic Journal of Combinatorics 4 (1997).

Comment citer

APA

Mühle, H. (2018). Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. Revista Colombiana de Matemáticas, 52(1), 65–86. https://doi.org/10.15446/recolma.v1n52.74562

ACM

[1]
Mühle, H. 2018. Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. Revista Colombiana de Matemáticas. 52, 1 (janv. 2018), 65–86. DOI:https://doi.org/10.15446/recolma.v1n52.74562.

ACS

(1)
Mühle, H. Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. rev.colomb.mat 2018, 52, 65-86.

ABNT

MÜHLE, H. Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. Revista Colombiana de Matemáticas, [S. l.], v. 52, n. 1, p. 65–86, 2018. DOI: 10.15446/recolma.v1n52.74562. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/74562. Acesso em: 22 janv. 2025.

Chicago

Mühle, Henri. 2018. « Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces ». Revista Colombiana De Matemáticas 52 (1):65-86. https://doi.org/10.15446/recolma.v1n52.74562.

Harvard

Mühle, H. (2018) « Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces », Revista Colombiana de Matemáticas, 52(1), p. 65–86. doi: 10.15446/recolma.v1n52.74562.

IEEE

[1]
H. Mühle, « Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces », rev.colomb.mat, vol. 52, nᵒ 1, p. 65–86, janv. 2018.

MLA

Mühle, H. « Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces ». Revista Colombiana de Matemáticas, vol. 52, nᵒ 1, janvier 2018, p. 65-86, doi:10.15446/recolma.v1n52.74562.

Turabian

Mühle, Henri. « Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces ». Revista Colombiana de Matemáticas 52, no. 1 (janvier 1, 2018): 65–86. Consulté le janvier 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/74562.

Vancouver

1.
Mühle H. Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. rev.colomb.mat [Internet]. 1 janv. 2018 [cité 22 janv. 2025];52(1):65-86. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/74562

Télécharger la référence

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Consultations de la page du résumé de l'article

280

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.