Publié-e
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces
Dos posets de particiones sin cruces provenientes de espacios de parqueo prohibidos
DOI :
https://doi.org/10.15446/recolma.v1n52.74562Mots-clés :
noncrossing partition, supersolvable lattice, left-modular lattice, parking function, lexicographic shellability, NBB base, Möbius function (en)Particiones sin cruces, retículo supersoluble, retículo modular izquierdo, funciones de parqueo, descascarabilidad lexicográfica, bases NBB, función Möbius (es)
Téléchargements
This work is motivated by a recent article by M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, and I. Nicolas, in which they introduce a subposet of the noncrossing partition lattice that is determined by parking functions with certain forbidden entries. In particular, they conjecture that the resulting poset always has a contractible order complex. We prove this conjecture by embedding their poset into ours, and showing that it inherits the lexicographic shellability.
Este trabajo es motivado por un artículo reciente de M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, e I. Nicolas en el cual introducen un subposet del retículo de particiones sin cruces que es determinado por funciones de parqueo con ciertas entradas prohibidas. En particular, ellos conjeturan que el poset resultante siempre tiene un complejo de orden contráctil. En este artículo probamos esta conjetura, sumergiendo su poset en el nuestro y mostrando que esta inmersión hereda la descascarabilidad lexicográfica.
Références
A. Björner, Shellable and Cohen-Macaulay Partially Ordered Sets, Transactions of the American Mathematical Society 260 (1980), 159-183.
A. Björner and M. L.Wachs, Shellable and Nonpure Complexes and Posets I, Transactions of the American Mathematical Society 348 (1996), 1299-1327.
A. Blass and B. E. Sagan, Möbius Functions of Lattices, Advances in Mathematics 127 (1997), 94-123.
M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, and I. Nicolas, A Decomposition of Parking Functions by Undesired Spaces, The Electronic Journal of Combinatorics 23 (2016).
J. Haglund, The q; t-Catalan Numbers and the Space of Diagonal Harmonics, American Mathematical Society, Providence, RI, 2008.
M. Haiman, Conjectures on the Quotient Ring by Diagonal Invariants,
Journal of Algebraic Combinatorics 3 (1994), 17-76.
P. Hersh, Decomposition and Enumeration in Partially Ordered Sets, Ph.d. thesis, 1999.
A. G. Konheim and B. Weiss, An Occupancy Discipline and Applications,
SIAM Journal on Applied Mathematics 14 (1966), 1266-1274.
G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Mathematics 1 (1972), 333-350.
S.-C. Liu, Left-Modular Elements and Edge-Labellings, Ph.d. thesis, 1999.
J. McCammond, Noncrossing Partitions in Surprising Locations, American Mathematical Monthly 113 (2006), 598-610.
P. McNamara and H. Thomas, Poset Edge-Labellings and Left Modularity, European Journal of Combinatorics 27 (2006), 101-113.
J. A. Segner, Enumeratio Modorum quibus Figurae Planae Rectilineae per Diagonales Dividuntur in Triangula, Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae VII (1761), 203-210.
R. Simion, Noncrossing Partitions, Discrete Mathematics 217 (2000), 397-409.
N. J. A. Sloane, The Online Encyclopedia of Integer Sequences,
R. P. Stanley, Supersolvable Lattices, Algebra Universalis 2 (1972), 197-217.
R. P. Stanley, Parking Functions and Noncrossing Partitions, The Electronic Journal of Combinatorics 4 (1997).
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Licence
© Revista Colombiana de Matemáticas 2018
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.