Publié-e
Graded modules over simple Lie algebras
DOI :
https://doi.org/10.15446/recolma.v53nsupl.84006Mots-clés :
graded Lie algebras, graded modules, simple modules, universal enveloping algebra (en)Álgebras de Lie graduadas, módulos graduados, módulos simples, álgebra envolvente universal (es)
Téléchargements
Références
B. Allison, S. Berman, J. Faulkner, and A. Pianzola, Realization of graded-simple algebras as loop algebras, Forum Math. 20 (2008), 395-432.
D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys. 15 (1974), 350-359.
Y. Bahturin, S. Sehgal, and M. Zaicev, Group gradings on associative algebras, J. Algebra 241 (2001), 667-698.
V. Bavula, Classification of simple sl(2)-modules and the finite dimensionality of the module of extensions of simple sl(2)-modules, (Russian), Ukrain. Mat. Zh. 42 (1990), 1174-1180, translation in Ukrainian Math. J. 42 (1990), 1044-1049 (1991).
V. Bavula, Generalized Weyl algebras and their representations, (Russian), Algebra i Analiz 4 (1992), 75-97, translation in St. Petersburg Math. J. 4 (1993), 71-92.
Y. Billig and M. Lau, Thin coverings of modules, J. Algebra 316 (2007), 147-173.
R. E. Block, The irreducible representations of the Lie algebra sl2 and of the Weyl algebra, Advances Math. 39 (1981), 69-110.
C. Draper, A. Elduque, and M. Kochetov, Gradings on modules over Lie algebras of E types, Algebr. Represent. Theory 20 (2017), 1085-1107.
C. Draper and A. Viruel, Fine gradings on e6, Publ. Mat. 60 (2016), 113-170.
A. Elduque, Gradings on algebras over algebraically closed fields, Nonassociative and non-commutative algebra and operator theory, 113-121, Springer Proc. Math. Stat. 160 (2016), Springer, Cham.
A. Elduque and M. Kochetov, Gradings on simple Lie algebras, Mathematical Surveys and Monographs 189, American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, 2013. xiv+336 pp., 2013.
A. Elduque and M. Kochetov, Graded modules over classical simple Lie algebras with a grading, Israel J. Math. 207 (2015), no. 1, 229-280.
A. Elduque and M. Kochetov, Gradings on the Lie algebra D4 revisited, J. Algebra 441 (2015), 441-474.
A. Elduque and M. Kochetov, Graded simple modules and loop modules, in: Groups, rings, group rings, and Hopf algebras, Contemp. Math. 688 (2017), 53-85.
J. Humphreys, Introduction to Lie algebras and representation theory, Second printing, revised. Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin 9 (1978), xii+171 pp.
F. Martin and C. Prieto, Construction of simple non-weight sl(2) modules of arbitrary rank, J. Algebra 472 (2017), 172-194.
V. Mazorchuk, Lectures on sl2(C)-modules, Imperial College Press, London, 2010, x+263 pp.
V. Mazorchuk and K. Zhao, Graded simple Lie algebras and graded simple representations, Manuscripta Math 156 (2018), 215-240.
J. Nilsson, Simple sln+1-module structures on U(h), J. Algebra 424 (2015), 294-329.
D. Picco and M. Platzeck, Graded algebras and Galois extensions, Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday, Rev. Un. Mat. Argentina 25 (1970/71), 401-415.
O. Smirnov, Simple associative algebras with nite Z-grading, J. Algebra 196 (1997), 171-184.
J. Yu, Maximal abelian subgroups of compact simple Lie groups of type E, Geom. Dedicata 185 (2016), 205-269.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
CrossRef Cited-by
1. Yuri Bahturin, Abdallah Shihadeh. (2022). Graded torsion-free 𝔰𝔩2(ℂ)-modules of rank 2. Journal of Algebra and Its Applications, 21(11) https://doi.org/10.1142/S0219498822502292.
Dimensions
PlumX
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 2019
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.