Pubblicato

2019-12-11

Graded modules over simple Lie algebras

DOI:

https://doi.org/10.15446/recolma.v53nsupl.84006

Parole chiave:

graded Lie algebras, graded modules, simple modules, universal enveloping algebra (en)
Álgebras de Lie graduadas, módulos graduados, módulos simples, álgebra envolvente universal (es)

##submission.downloads##

Autori

  • Yuri Bahturin Memorial University of Newfoundland
  • Mikhail Kochetov Memorial University of Newfoundland
  • Abdallah Shihadeh Memorial University of Newfoundland
The paper is devoted to the study of graded-simple modules and gradings on simple modules over finite-dimensional simple Lie algebras. In general, a connection between these two objects is given by the so-called loop construction. We review the main features of this construction as well as necessary and sufficient conditions under which finite-dimensional simple modules can be graded. Over the Lie algebra sl2(C), we consider specific gradings on simple modules of arbitrary dimension.
El artículo está dedicado al estudio de módulos graduados simples y graduaciones de módulos simples sobre álgebras de Lie simples de dimensión finita. En general, una conexión entre estos dos objetos viene dada por la llamada construcción de lazos. Revisaremos las características principales de esta construcción, así como las condiciones necesarias y suficientes bajo las cuales se pueden graduar los módulos simples de dimensión finita. Para el álgebra de Lie sl2(C), consideramos graduaciones específicas en módulos simples de dimensión arbitraria.

Riferimenti bibliografici

B. Allison, S. Berman, J. Faulkner, and A. Pianzola, Realization of graded-simple algebras as loop algebras, Forum Math. 20 (2008), 395-432.

D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys. 15 (1974), 350-359.

Y. Bahturin, S. Sehgal, and M. Zaicev, Group gradings on associative algebras, J. Algebra 241 (2001), 667-698.

V. Bavula, Classification of simple sl(2)-modules and the finite dimensionality of the module of extensions of simple sl(2)-modules, (Russian), Ukrain. Mat. Zh. 42 (1990), 1174-1180, translation in Ukrainian Math. J. 42 (1990), 1044-1049 (1991).

V. Bavula, Generalized Weyl algebras and their representations, (Russian), Algebra i Analiz 4 (1992), 75-97, translation in St. Petersburg Math. J. 4 (1993), 71-92.

Y. Billig and M. Lau, Thin coverings of modules, J. Algebra 316 (2007), 147-173.

R. E. Block, The irreducible representations of the Lie algebra sl2 and of the Weyl algebra, Advances Math. 39 (1981), 69-110.

C. Draper, A. Elduque, and M. Kochetov, Gradings on modules over Lie algebras of E types, Algebr. Represent. Theory 20 (2017), 1085-1107.

C. Draper and A. Viruel, Fine gradings on e6, Publ. Mat. 60 (2016), 113-170.

A. Elduque, Gradings on algebras over algebraically closed fields, Nonassociative and non-commutative algebra and operator theory, 113-121, Springer Proc. Math. Stat. 160 (2016), Springer, Cham.

A. Elduque and M. Kochetov, Gradings on simple Lie algebras, Mathematical Surveys and Monographs 189, American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, 2013. xiv+336 pp., 2013.

A. Elduque and M. Kochetov, Graded modules over classical simple Lie algebras with a grading, Israel J. Math. 207 (2015), no. 1, 229-280.

A. Elduque and M. Kochetov, Gradings on the Lie algebra D4 revisited, J. Algebra 441 (2015), 441-474.

A. Elduque and M. Kochetov, Graded simple modules and loop modules, in: Groups, rings, group rings, and Hopf algebras, Contemp. Math. 688 (2017), 53-85.

J. Humphreys, Introduction to Lie algebras and representation theory, Second printing, revised. Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin 9 (1978), xii+171 pp.

F. Martin and C. Prieto, Construction of simple non-weight sl(2) modules of arbitrary rank, J. Algebra 472 (2017), 172-194.

V. Mazorchuk, Lectures on sl2(C)-modules, Imperial College Press, London, 2010, x+263 pp.

V. Mazorchuk and K. Zhao, Graded simple Lie algebras and graded simple representations, Manuscripta Math 156 (2018), 215-240.

J. Nilsson, Simple sln+1-module structures on U(h), J. Algebra 424 (2015), 294-329.

D. Picco and M. Platzeck, Graded algebras and Galois extensions, Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday, Rev. Un. Mat. Argentina 25 (1970/71), 401-415.

O. Smirnov, Simple associative algebras with nite Z-grading, J. Algebra 196 (1997), 171-184.

J. Yu, Maximal abelian subgroups of compact simple Lie groups of type E, Geom. Dedicata 185 (2016), 205-269.

Come citare

APA

Bahturin, Y., Kochetov, M. e Shihadeh, A. (2019). Graded modules over simple Lie algebras. Revista Colombiana de Matemáticas, 53(supl), 45–86. https://doi.org/10.15446/recolma.v53nsupl.84006

ACM

[1]
Bahturin, Y., Kochetov, M. e Shihadeh, A. 2019. Graded modules over simple Lie algebras. Revista Colombiana de Matemáticas. 53, supl (dic. 2019), 45–86. DOI:https://doi.org/10.15446/recolma.v53nsupl.84006.

ACS

(1)
Bahturin, Y.; Kochetov, M.; Shihadeh, A. Graded modules over simple Lie algebras. rev.colomb.mat 2019, 53, 45-86.

ABNT

BAHTURIN, Y.; KOCHETOV, M.; SHIHADEH, A. Graded modules over simple Lie algebras. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. supl, p. 45–86, 2019. DOI: 10.15446/recolma.v53nsupl.84006. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/84006. Acesso em: 22 gen. 2025.

Chicago

Bahturin, Yuri, Mikhail Kochetov, e Abdallah Shihadeh. 2019. «Graded modules over simple Lie algebras». Revista Colombiana De Matemáticas 53 (supl):45-86. https://doi.org/10.15446/recolma.v53nsupl.84006.

Harvard

Bahturin, Y., Kochetov, M. e Shihadeh, A. (2019) «Graded modules over simple Lie algebras», Revista Colombiana de Matemáticas, 53(supl), pagg. 45–86. doi: 10.15446/recolma.v53nsupl.84006.

IEEE

[1]
Y. Bahturin, M. Kochetov, e A. Shihadeh, «Graded modules over simple Lie algebras», rev.colomb.mat, vol. 53, n. supl, pagg. 45–86, dic. 2019.

MLA

Bahturin, Y., M. Kochetov, e A. Shihadeh. «Graded modules over simple Lie algebras». Revista Colombiana de Matemáticas, vol. 53, n. supl, dicembre 2019, pagg. 45-86, doi:10.15446/recolma.v53nsupl.84006.

Turabian

Bahturin, Yuri, Mikhail Kochetov, e Abdallah Shihadeh. «Graded modules over simple Lie algebras». Revista Colombiana de Matemáticas 53, no. supl (dicembre 11, 2019): 45–86. Consultato gennaio 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/84006.

Vancouver

1.
Bahturin Y, Kochetov M, Shihadeh A. Graded modules over simple Lie algebras. rev.colomb.mat [Internet]. 11 dicembre 2019 [citato 22 gennaio 2025];53(supl):45-86. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/84006

Scarica citazione

CrossRef Cited-by

CrossRef citations1

1. Yuri Bahturin, Abdallah Shihadeh. (2022). Graded torsion-free 𝔰𝔩2(ℂ)-modules of rank 2. Journal of Algebra and Its Applications, 21(11) https://doi.org/10.1142/S0219498822502292.

Dimensions

PlumX

Viste delle pagine degli abstract

252

Downloads

I dati di download non sono ancora disponibili.