Pubblicato
Graded modules over simple Lie algebras
DOI:
https://doi.org/10.15446/recolma.v53nsupl.84006Parole chiave:
graded Lie algebras, graded modules, simple modules, universal enveloping algebra (en)Álgebras de Lie graduadas, módulos graduados, módulos simples, álgebra envolvente universal (es)
##submission.downloads##
Riferimenti bibliografici
B. Allison, S. Berman, J. Faulkner, and A. Pianzola, Realization of graded-simple algebras as loop algebras, Forum Math. 20 (2008), 395-432.
D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys. 15 (1974), 350-359.
Y. Bahturin, S. Sehgal, and M. Zaicev, Group gradings on associative algebras, J. Algebra 241 (2001), 667-698.
V. Bavula, Classification of simple sl(2)-modules and the finite dimensionality of the module of extensions of simple sl(2)-modules, (Russian), Ukrain. Mat. Zh. 42 (1990), 1174-1180, translation in Ukrainian Math. J. 42 (1990), 1044-1049 (1991).
V. Bavula, Generalized Weyl algebras and their representations, (Russian), Algebra i Analiz 4 (1992), 75-97, translation in St. Petersburg Math. J. 4 (1993), 71-92.
Y. Billig and M. Lau, Thin coverings of modules, J. Algebra 316 (2007), 147-173.
R. E. Block, The irreducible representations of the Lie algebra sl2 and of the Weyl algebra, Advances Math. 39 (1981), 69-110.
C. Draper, A. Elduque, and M. Kochetov, Gradings on modules over Lie algebras of E types, Algebr. Represent. Theory 20 (2017), 1085-1107.
C. Draper and A. Viruel, Fine gradings on e6, Publ. Mat. 60 (2016), 113-170.
A. Elduque, Gradings on algebras over algebraically closed fields, Nonassociative and non-commutative algebra and operator theory, 113-121, Springer Proc. Math. Stat. 160 (2016), Springer, Cham.
A. Elduque and M. Kochetov, Gradings on simple Lie algebras, Mathematical Surveys and Monographs 189, American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, 2013. xiv+336 pp., 2013.
A. Elduque and M. Kochetov, Graded modules over classical simple Lie algebras with a grading, Israel J. Math. 207 (2015), no. 1, 229-280.
A. Elduque and M. Kochetov, Gradings on the Lie algebra D4 revisited, J. Algebra 441 (2015), 441-474.
A. Elduque and M. Kochetov, Graded simple modules and loop modules, in: Groups, rings, group rings, and Hopf algebras, Contemp. Math. 688 (2017), 53-85.
J. Humphreys, Introduction to Lie algebras and representation theory, Second printing, revised. Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin 9 (1978), xii+171 pp.
F. Martin and C. Prieto, Construction of simple non-weight sl(2) modules of arbitrary rank, J. Algebra 472 (2017), 172-194.
V. Mazorchuk, Lectures on sl2(C)-modules, Imperial College Press, London, 2010, x+263 pp.
V. Mazorchuk and K. Zhao, Graded simple Lie algebras and graded simple representations, Manuscripta Math 156 (2018), 215-240.
J. Nilsson, Simple sln+1-module structures on U(h), J. Algebra 424 (2015), 294-329.
D. Picco and M. Platzeck, Graded algebras and Galois extensions, Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday, Rev. Un. Mat. Argentina 25 (1970/71), 401-415.
O. Smirnov, Simple associative algebras with nite Z-grading, J. Algebra 196 (1997), 171-184.
J. Yu, Maximal abelian subgroups of compact simple Lie groups of type E, Geom. Dedicata 185 (2016), 205-269.
Come citare
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Scarica citazione
CrossRef Cited-by
1. Yuri Bahturin, Abdallah Shihadeh. (2022). Graded torsion-free 𝔰𝔩2(ℂ)-modules of rank 2. Journal of Algebra and Its Applications, 21(11) https://doi.org/10.1142/S0219498822502292.
Dimensions
PlumX
Viste delle pagine degli abstract
Downloads
Licenza
Copyright (c) 2019 Revista Colombiana de Matemáticas
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.