Corchete y curvatura
Parole chiave:
Lie Bracket, Curvature tensor, Affine connection, 2000 Mathematics Subject Classification, Primary: 53B20, Secondary: 53B21 (es)##submission.downloads##
La primera parte del artículo presenta al corchete de Lie asociado al problema de la comutatividad de dos flujos. En la segunda parte se introducen
las definiciones básicas de conexión y curvatura en fibrados vectoriales, subrayando la relación corchete-curvatura. Finalmente, usando conexiones afines
localmente definidas, se da una demostración original y sencilla de un teorema de Eugenio Beltrami. Este artículo apunta a un lector no especialista (e.g. un
estudiante de doctorado en matemática o física, etc) en geometría diferencial local.
Riferimenti bibliografici
[BCO] J. Berndt, S. Console and C. Olmos, Submanifolds and Holonomy (Research Notes in Mathematics Series), Chapman & Hall/CRC, Boca Raton, 2003.
[Bel] E. Beltrami, Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette, Ann. Mat. 1, no. 7 (1865), 185-204.
[Ber] M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003.
[Car] E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928.
[ChEb] J. Cheegerand D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Pub. Co., Amsterdam, 1975.
[DiS] A. J. Di Scala, On an assertion in Riemann’s Habilitationsvortrag, Enseign. Math. 47 no. 1-2 (2001), 57-63.
[Eis] L. P. Eisenhart, Riemannian Geometry, 2ed, Princeton University Press, Princeton, 1949.
[KNI] S. Kobayashi And K. Nomizu, Foundations of differential geometry, Vol. 1 , Interscience Publishers, New York, 1963.
[HeLi] E. Heintze And X. Liu, Homogeneity of infinite dimensional isoparametric submanifolds, Ann. of Math. 149 no. 1 (1999), 149-181.
[Mat] V. S. Matveev, Geometric explanation of the Beltrami Theorem, Internet (2003).
[MoOl] B. Molina and C. Olmos, Manifolds all of whose flats are closed, J. Differential Geom. 45 no. 3 (1997), 575-592.
[Mil] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 3 2 (1958), 215-223.
[Olm] C. Olmos, A geometric proof of Berger holonom y theorem, Ann. of Math. 161 no. 1 (2005), 579-588.
[Sp2] M. Spivak, A comprehensive Introduction to Differential Geometry, Vol. 2, 2nd ed, Perish, Inc., Berkeley, California, 1979
[Sp3] M. Spivak, A comprehensive Introduction to Differential Geometry, Vol. 3, 2nd ed, Publish or Perish, Inc., Berkeley, California, 1979.
[Ste] P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713.
[Zeg] A. Zeghib, Remarks on Lorentz symmetric spaces, Compositio Math., 140 (2004), 1675-1678.