Parámetros genéticos para producción de leche en ganado Simmental (Bos taurus) mediante modelos genómicos y poligénicos
Genetic parameters for milk production in Simmental cattle (Bos taurus) using genomic and polygenic models
DOI:
https://doi.org/10.15446/rfmvz.v66n2.82431Keywords:
componentes de varianza, ganado de leche, marcadores moleculares, mejoramiento genético, selección genómica (es)dairy cattle, genetic improvement, genomic selection, molecular markers, variance components (en)
Downloads
El objetivo de este estudio fue estimar parámetros genéticos con y sin la inclusión de
parentesco genómico para la producción de leche acumulada a 60 (PL60), 150 (PL150),
210 (PL210) y 305 días (PL305) en ganado Simmental en Colombia. Un total de 2883
controles lecheros en 620 vacas de primer parto fueron utilizados. La información genómica
se obtuvo a partir de 718 animales genotipados con un chip de una densidad
de 30106 marcadores genéticos tipo polimorfismo de nucleótido simple (SNP). Se
construyeron modelos de tipo univariado y bivariado bajo la metodología del mejor
predictor lineal insesgado (BLUP) y genómico en una etapa (ssGBLUP). Los valores de
heredabilidades para PL60, PL150, PL210 y PL305 variaron entre 0,20 a 0,27; 0,25 a
052; 0,30 a 0,35 y 0,20 a 0,23; respectivamente. La inclusión de parentesco genómico
no aumentó las heredabilidades y tampoco la precisión de las estimaciones para las
características asociadas a producción de leche. La escasez de información fenotípica y
la baja conectividad genética entre la población genotipada y no genotipada podrían
limitar procesos de selección genética para producción de leche a través del ssGBLUP
en la población de ganado Simmental de Colombia.
The aim of this study was to estimate genetic parameters with and without the inclusion
of genomic relationship in cumulative milk production of Simmental cattle in Colombia
for 60 (MP60), 150 (MP150), 210 (MP210) and 305 (MP305) days. A total of 2883
test records from 620 cows in first lactation were used. The genomic information was
obtained from 718 animals genotyped with a commercial chip with a density of 30,106
single nucleotide polymorphism (SNP) genetic markers. Univariate and bivariate models were used under the conventional best linear unbiased predictor (BLUP) and the single step genomic BLUP (ssGBLUP) methodologies. The heritability estimate values for MP60, MP150, MP210 and MP305 ranged from 0.20 to 0.27, 0.25 to 0.52, 0.30 to 0.35 and 0.20 to 0.23, respectively. The use of the genomic relationship did not increase heritabilities nor the accuracy of estimates for milk traits. The lack of phenotypic records and the low genetic connectivity between genotyped and non-genotyped populations could limit the genetic selection procedures for milk production via the ssGBLUP in Colombian Simmental cattle.
References
Aguilar I, Misztal I, Johnson D, Legarra A, Tsuruta S, Lawlor T. 2010. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 93(2): 743–752. Doi: 10.3168/jds.2009-2730.
Baba T, Gotoh Y, Yamaguchi S, Nakagawa S, Abe H, Masuda Y, Kawahara Y. 2016. Application of single-step genomic best linear unbiased prediction with a multiple-lactation random regression test-day model for Japanese Holsteins. Anim Sci J. 88(8): 1226-1231. Doi: 10.1111/ asj.12760.
Bignardi AB, Faro, LE, Santana Jr ML, Rosa GJM, Cardoso VL, Machado PF, Alburqueque LG. 2012. Bayesian analysis of random regression models using B-splines to model test-day milk yield of Holstein cattle in Brazil. Livestock Science. 150: 401-406. Doi: 10.1016/j. livsci.2012.09.010.
Boison SA, Utsunomiya ATH, Santos DJA, Neves HHR, Carvalheiro G, Meszaros G, Utsunomiya YT, Carmo AS, Verneque RS, Machado MA, et al. 2017. Accuracy of genomic predictions in Gyr (Bos indicus) dairy cattle. J Dairy Sci. 100(7): 1-12. Doi: 10.3168/jds.2016-11811.
Calus MP, Veerkamp RF. 2011. Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol. 43: 1-14. Doi: 10.1186/1297- 9686-43-26.
Cho CI, Alam M, Choi TJ, Choy YH, Choi JG, Lee SS, Cho KH. 2016. Models for estimating genetic parameters of milk production traits using random regression models in Korean Holstein cattle. Asian-Australas J Anim Sci. 29(5): 607-614. Doi: 10.5713/ajas.15.0308.
Clark SA, Hickey JM, Van Der Werf J. 2011. Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol. 43(1): 1-9. Doi: 10.1186/1297-9686-43-18.
Cobuci JA, Napolis C, Braccini J, Ferreira A. 2011. Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modelling. R Bras Zootec. 40(3): 557-567. Doi: 10.1590/ S1516-35982011000300013.
De Melo CMR, Packer IU, Costa CN, Machado PF. 2017. Genetic parameters for test day milk yields of first lactation Holstein cows by random regression models. Animal. 1(3): 325-334. Doi: 10.1017/S1751731107685036.
Falconer DS, Mackay FC. 1996. Introduction to quantitative genetics. 4° ed. NY: Pearson / Longman Scientific & Technical.
Gao H, Koivula M, Jensen J, Strandén I, Madsen P, Pitkanen T, Aamand GP, Mantysaari EA. 2018. Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population. J Dairy Sci. 101(11): 1-7. Doi: 10.3168/jds.2018-14913.
Gebreyohannes G, Koonawootrittriron S, Elzo M, Suwanasopee T. 2016. Estimation of genetic parameters using a random regression monthly test-day model in an Ethiopian dairy cattle population. Agriculture and Natural Resources. 50: 64-70. Doi: 10.1016/j.anres.2015.06.002.
Gray KA, Cassadi JP, Huang Y, Maltecca C. 2012. Effectiveness of genomic prediction on milk flow traits in dairy cattle. Genet Sel Evol. 44: 1-6. Doi: 10.1186/1297-9686-44-24.
Guarini AR, Lourenco DLA, Brito LF, Sargolzaei M, Baes CF, Miglior F, Misztal I, Schenkel FS. 2018. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle. J Dairy Sci. 101(9): 1-11. Doi: 10.3168/jds.2017-14193.
Haile-Mariam M, Goddard ME. 2008. Genetic and phenotypic parameters of lactations longer than 305 days (extended lactations). Animal. 2: 325-335. Doi: 10.1017/S1751731107001425.
Haile-Mariam M, Nieuwhof GJ, Beard KT, Konstatinov KV, Hayes BY. 2012. Comparison of heritabilities of dairy traits in Australian Holstein-Friesian cattle from genomic and pedigree data and implications for genomic evaluations. J Anim Breed Genet. 130: 20-31. Doi: 10.1111/j.1439-0388.2013.01001.x.
[ICAR] International Comitte for Animal Recording. 2014. International agreement of recording practices. ICAR recording guidelines. Roma (IT): ICAR.
Jattawa D, Elzo M, Koonawootrittriron S, Suwanasopee T. 2016. Genomic-polygenic and polygenic evaluations for milk yield and fat percentage using random regression models with Legendre polynomials in a Thai multibreed dairy population. Livestock Science. 188: 133–141. Doi: 10.1016/j.livsci.2016.04.019.
Koivula M, Strandén I, Poso J, Aamand GP, Mantysaari EA. 2015. Single-step genomic evaluation using multitrait random regression model and test-day data. J Dairy Sci. 98(4): 2775–2784. Doi: 10.3168/jds.2014-8975.
Lembeye F, López-Villalobos N, Burke JL, Davis SR. 2016. Estimation of genetic parameters for milk traits in cows milked once- or twice-daily in New Zealand. Livestock Science. 185: 142-147. Doi: 10.1016/j.livsci.2016.01.022.
Meyer K, Tier B, Swan A. 2018. Estimates of genetic trend for single-step genomic evaluations. Genet Sel Evol. 50: 1-13. Doi: 10.1186/ s12711-018-0410-1.
Misztal I, Tsuruta S, Lourenco DLA, Masuda Y, Aguilar I, Legarra A. 2018. Manual for BLUPF90 family of programs. Athens (USA): University of Georgia.
Montaldo HH, Castillo-Juarez H, Valencia-Posadas M, Cienfuegos-Rivas EG, Ruiz López FJ. 2010. Genetic and environmental parameters for milk production, udder health, and fertility traits in Mexican Holstein cows. J Dairy Sci. 93(5): 2168-2175. Doi: 10.3168/jds.2009-2050.
Nistor E, Bampidis VA, Pentea M. 2014. Production traits of Romanian Simmental cows at first lactation. Slovak J Anim. Sci. 47: 132-141.
Ojango JMK, Mrode M, Rege JEO, Mujibi D, Strucken EM, Gibson J, Mwai O. 2019. Genetic evaluation of test-day milk yields from smallholder dairy production systems in Kenya using genomic relationships. J. Dairy Sci. 102: 5266-5278. Doi: 10.3168/jds.2018-15807.
Pantelić V, Novaković Ž, Ostojić-Andrić D. 2009. Selection of bull dams in population of Simmental cattle. Biotech in Anim Husb. 25: 301-313. Doi: 10.2298/BAH0906301P.
Perišić P, Skalicki Z, Petrović MM, Bogdanović V, Ružić-Musli D. 2009. Simmental cattle breed in different production systems. Biotech in Anim Husb. 25: 315-326.
Petrini J, Lung LHS, Rodriguez MAP, Salvian M, Pertille F, Robadoscki GA, Cassoli LD, Coutinho LL, Machado PF, Wiggans GR, Mourao GB. 2016. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. J Anim Breed Genet. 133(5): 384-395. Doi: 10.1111/jbg.12205.
Přibyl J, Haman J, Kott T, Přibylová J, Šimečková M, Vostrý L, Zavadilová L, Čermák V, Růžička Z, Splíchal J, et al. 2012. Single-step prediction of genomic breeding value in a small dairy cattle population with strong import of foreign genes. Czech J. Anim. Sci. 57: 151–159. Doi: 10.17221/5890-cjas.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D. 2007. PLINK: A tool set for whole-genome association and population-based linkage. Am J Hum Genet. 81(3): 559-575. Doi: 10.1086/519795.
Rolf MM, Garrick D, Fountain T, Ramey HR, Weaver RL, Decker JE, Pollak EJ, Schnabel RD, Taylor JF. 2015. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle. Genet Sel Evol. 47: 1-14. Doi: 10.1186/s12711-015-0106-8.
Shevhuzhev A, Belik N, Emelyanov E, Tokar A. 2017. Milk productivity of Simmental cows Austrian selection. Engineering for rural development. 24: 1354-1358.
Tiezzi F, Maltecca C. 2015. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genet Sel Evol. 47: 24. Doi: 10.1186/ s12711-015-0100-1.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Rodica Stefania Pelmuș, Mircea Cătălin Rotar, Cristina Lazăr, Răzvan Alexandru Uță. (2021). Estimation the Genetic Parameters for Milk Yield in Romanian Spotted, Simmental Type Cattle Breed. Archiva Zootechnica, 24(2), p.105. https://doi.org/10.2478/azibna-2021-0017.
2. Alejandro Amaya, José-Miguel Cotes-Torres. (2025). Genetic improvement in Colombian cattle, a reality or an intention? A review. Revista Colombiana de Ciencias Pecuarias, 38(2) https://doi.org/10.17533/udea.rccp.v38n2a1.
3. Alejandro Amaya, Rodrigo Martínez, Mario Cerón-Muñoz. (2021). Selection indexes using principal component analysis for reproductive, beef and milk traits in Simmental cattle. Tropical Animal Health and Production, 53(3) https://doi.org/10.1007/s11250-021-02815-y.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Revista de la Facultad de Medicina Veterinaria y de Zootecnia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This article is published under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
The authors retain copyright of their work and grant the journal the right of first publication.
Readers are free to copy and redistribute the material in any medium or format under the license terms, provided proper attribution is given, the work is not used for commercial purposes, and no modifications or derivatives are made.
© Revista de la Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, as the original publisher.