Establecimiento de biofloc a tres relaciones carbono/nitrógeno, tendiente a la producción de zooplancton
Establishment of biofloc at three carbon/nitrogen ratios, tending to the production of zooplankton
DOI:
https://doi.org/10.15446/rfmvz.v69n3.99968Keywords:
Biofloc, sólidos, establecimiento, zooplancton, amonio (es)Biofloco, sólidos, estabelecimento, zooplâncton, amônio. (pt)
Biofloc, solids, establishment, zooplankton, ammonium. (en)
Downloads
El objetivo de esta investigación fue establecer el biofloc a tres relaciones carbono/ nitrógeno (C/N): 10/1, 15/1 y 20/1, determinando la secuencia de remoción de N, el perfil de sólidos y la caracterización del zooplancton, para tal fin se dispuso de tres tanques con volumen de 7000 L, incorporando oxígeno al agua a través de un aireador tipo soplador. Se utilizó como fuente de N balanceado, fuente de carbono melaza y bicarbonato de sodio como fuente alcalinizante. Al inicio se incrementó el nitrógeno amoniacal total NAT a 2 mg/L, la alcalinidad total (AT) a 120 mg/L y se adicionó como inóculo 10 litros/tanque de agua proveniente de un estanque de cultivo, al sexto y décimo días se adicionó balanceado incrementando teóricamente el NAT en 4 mg/L y a partir del día 12 en 1 mg/L. En las tres relaciones C/N se evidenciaron procesos de nitrificación durante la estabilización del biofloc, hasta llegar en el tiempo a concentraciones no letales de amonio y nitrito para peces, menores a 1 mg/L. En cuanto a los sólidos volátiles, se encontró una mayor concentración en la relación 20/1, lo cual puede atribuirse a la mayor adición de melaza, con la consecuente producción de SSV a partir de la dominancia de comunidades heterotróficas, en los tres macrocosmos se presentaron comunidades del zooplancton, no obstante, el T2 presentaron la mayor abundancia y riqueza de organismos. Las tres relaciones C/N en biofloc establecieron condiciones de calidad de agua y alimento vivo.
The objective of this research was to establish the biofloc at three carbon/nitrogen (C/N) relationships: 10/1, 15/1 and 20/1, determining the N removal sequence, the solids profile and the characterization of the zooplankton, for this purpose three tanks with a volume of 7000 L were available, incorporating oxygen into the water through a blower-type aerator. It was used as a source of balanced N, a source of carbon molasses and sodium bicarbonate as an alkalizing source. At the beginning, the total ammoniacal nitrogen NAT was increased to 2 mg/L, the total alkalinity (AT) to 120 mg/L and 10 liters / tank of water from a culture pond was added as inoculum, on the sixth and tenth days it was he added balanced, theoretically increasing the NAT by 4 mg/L and from day 12 by 1 mg/L. In the three C / N relationships, nitrification processes were evidenced during the stabilization of the biofloc, until reaching non-lethal concentrations of ammonium and nitrite for fish, less than 1 mg/L in time. Regarding volatile solids, a higher concentration was found in the 20/1 ratio, which can be attributed to the greater addition of molasses, with the consequent production of SSV from the dominance of heterotrophic communities, in the three macrocosms there were Zooplankton communities, however, T2 presented the highest abundance and richness of organisms. The three C / N relationships in biofloc established conditions of water quality and live food.
O objetivo desta pesquisa foi estabelecer o biofloco em três relações C / N (10/1, 15/1 e 20/1), visando à produção de alimento vivo; Determinando a seqüência de remoção de N, o perfil de sólidos e a caracterização do zooplâncton, para tanto, foram disponibilizados três tanques com volume de 7000 L, incorporando oxigênio à água por meio de aerador tipo soprador. Foi usado como fonte de N balanceado, fonte de melaço de carbono e bicarbonato de sódio como fonte alcalinizante. No início, o NAT de nitrogênio amoniacal total foi aumentado para 2 mg / L, a alcalinidade total (AT) para 120 mg / L e 10 litros / tanque de água de um tanque de cultivo foi adicionado como inóculo, no sexto e décimo dias foi adicionado balanceado, teoricamente aumentando o NAT em 4 mg / L e a partir do dia 12 em 1 mg/L. Nas três relações C / N, processos de nitrificação foram evidenciados durante a estabilização do biofloco, até atingir concentrações não letais de amônio e nitrito para peixes, inferiores a 1 mg / L no tempo. Em relação aos sólidos voláteis, maior concentração foi encontrada na relação 20/1, o que pode ser atribuído à maior adição de melaço, com a consequente produção de SSV a partir da dominância de comunidades heterotróficas, nos três macrocosmos havia comunidades zooplanctônicas, porém , T2 apresentou a maior abundância e riqueza de organismos. As três relações C / N no biofloco estabeleceram condições de qualidade da água e alimento vivo.
References
Aboal M, Alvares–Troncoso R, Corrochano–Codorníu A. 2012. ID-impuesto. Catálogo y claves de identificación de organismos fitoplanctónicos como elementos de calidad en las redes de control del estado ecológico. Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, España.
Arcos–Pulido MDP, Gómez Prieto AC. 2006. Microalgas perifíticas como indicadoras del estado de las aguas de un humedal urbano: Jaboque, Bogotá DC, Colombia. Nova. 5(6):60-79.
APHA. 1998. Standard methods for the examination of water and wastewater. 20th edition. American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC.
APHA. 2017. Standard methods for the examination of water and wastewater. 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Denver.
Atencio GV. 2001. Producción de alevinos de especies nativas. Revista MVZ Córdoba. 6(1): 9-14. https://doi.org/10.21897/rmvz.1060
Avnimelech Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264(1-4): 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025
Avnimelech Y. 2009. Biofloc Technology – A practical guide book. Baton Rouge, Louisiana, USA: World Aquaculture Society.
Avnimelech Y. 2015. Biofloc technology: a practical guide book. 3rd edition. Baton Rouge, Louisiana, USA: World Aquaculture Society.
Ayazo–Genes J, Pertuz–Buelvas V, Jiménez–Velásquez C, Espinosa–Araujo J, Atencio–García V, Prieto–Guevara M. 2019. Comunidades planctónicas y bacterianas asociadas al cultivo de bocachico Prochilodus magdalenae con tecnología biofloc. Rev MVZ Córdoba. 24(2): 7209-7217. https://doi.org/10.21897/rmvz.1648
Azim ME, Little DC, Bron JE. 2008. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresour Technol. 99(9):3590-3599. https://doi.org/10.1016/j.biortech.2007.07.063
Bakar NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. Int Biodeterior Biodegradation. 102:100-106. https://doi.org/10.1016/j.ibiod.2015.04.001
Bakhshi F, Najdegerami EH, Manaffar R, Tukmechi A, Farah KR. 2018. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture. 484:259-267. https://doi.org/10.1016/j.aquaculture.2017.11.036
Barbieri E, Vigliar Bondioli AC. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquac Res. 46(3):565-571. https://doi.org/10.1111/are.12203
Betancur Gonzáles EM, David Ruales CA, Gutiérrez LA. 2016. Diversidad del perifiton presente en un sistema de producción de tilapia en biofloc. Rev Lasallista Investig. 13(2): 163-177. https://doi.org/10.22507/rli.v13n2a15
Boyd CE. 2015. Water quality: an introduc¬tion. Springer Publisher. 330 p. https://doi.org/10.1007/978-3-319-17446-4
Brú–Cordero SB, Pertuz–Buelvas V, Ayazo–Genes J, Atencio–García VJ, Pardo–Carrasco S. 2017. Bicultivo de cachama blanca Piaractus brachypomus y tilapia nilótica Oreochromis niloticus en biofloc alimentadas con dietas de origen vegetal. Rev Med Vet Zoot. 64(1):44- 60. https://doi.org/10.15446/rfmvz.v64n1.65824
Castro–Mejía G, De Lara AR, Monroy–Dosta MC, Maya–Gutiérrez S, Castro–Mejía J, Jiménez– Pacheco F. 2017. Presencia y abundancia de fitoplancton y zooplancton en un sistema de producción de Biofloc utilizando dos aportes de carbono: 1) Melaza y 2) Melaza + pulido de arroz cultivando al pez Oreochromis niloticus. Revista Digital del Departamento El Hombre y su Ambiente. 1(13):33-42.
Collazos–Lasso LF, Arias–Castellanos JA. 2015. Fundamentos de la tecnología biofloc (BFT).
Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia. 19(1):77-86. https://doi.org/10.22579/20112629.341
Crab R, Chielens B, Wille M, Bossier P, Verstraete W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res. 41:559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x
Crab R, Defoirdt T, Bossier P, Verstraete W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture. 356-357:351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046
David–Ruales C, Machado–Fracalossi D, Vásquez– Torres W. 2018. Desarrollo temprano en larvas de peces. clave para el inicio de la alimentación exógena. Rev Lasallista Investig. 15(1):180-194. https://doi.org/10.22507/rli.v15n1a10
De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture. 277(3-4):125-137. https://doi.org/10.1016/j.aquaculture.2008.02.019
Ebeling JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 257(1-4):346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
Ekasari J, Hanif Azhar M, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P. 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol. 41(2):332-339. https://doi.org/10.1016/j.fsi.2014.09.004
Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin M, Bossier P, De Schryver P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture. 441:72-77. https://doi.org/10.1016/j.aquaculture.2015.02.019
Ekasari J, Suprayudi MA, Wiyoto W, Hazanah RF, Lenggara GS, Sulistiani R, Zairin M. 2016. Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquacul¬ture. 464:349-356. https://doi.org/10.1016/j.aquaculture.2016.07.013
Elmoor–Loureiro LMA. 1997. Manual de identificação de cladóceros límnicos do Brasil. Proyecto: Biodiversidade de Cladócera no Brasil. Editorial: Editora Universa – UCB. 156 p.
Emerenciano MGC, Martínez–Córdova LR, Martínez-Porchas M, Miranda–Baeza A. 2017. Biofloc technology (BFT): A tool for water Quality management in aquaculture. In: Tutu H. (Ed.), Water Quality. InTechOpen, London, UK, pp. 91-109. https://doi.org/10.5772/66416
Emerson K, Russo RC, Lund RE, Thurston RV. 1975. Aqueous ammonia equilibrium calcu¬lations: effect of pH and temperature. J Fish Res Board Can. 32:2379-2383. https://doi.org/10.1139/f75-274
Fauji H, Budiardi T, Ekasari J. 2018. Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc-based nursery production with different stocking densities. Aquac Res. 49(3):1339-1346. https://doi.org/10.1111/are.13595
Fontaneto D, De Smet WH. 2014. Manual de Zoología, Gastrotricha, Cicloneuralia y Gnathifera. Vol 3, Gastrotricha y Gnathifera Cap: Rotifera, pp. 217-300.
García–Ríos L, Miranda–Baeza A, Coelho–Emerenciano MG, Huerta–Rábago JA, Osuna–Amarillas P. 2019. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture. 502:26-31. https://doi.org/10.1016/j.aquaculture.2018.11.05
Glime JM. 2017. Invertebrates: Rotifer Taxa – Monogononta. Chap. 4-7a. In: Glime JM (Ed.), Bryophyte Ecology. Vol 2: 4-7a-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponible en: http://digitalcommons.mtu.edu/bryophyte-ecology2/
Gomes Vilani F, Schveitzer R, da Fonseca Arantes R, do Nascimento Vieira F, Manoel do Espírito Santo C, Quadros Seiffert W. 2016. Strategies for water preparation in a biofloc system: Effects of carbon source and fertilization dose on water quality and shrimp performance. Aquac Eng. 74:70-75. https://doi.org/10.1016/j.aquaeng.2016.06.002
Hargreaves JA. 2013. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center (SRAC). Publication No. 4503. 12 p.
Hernández ER, Rodríguez MA, Ruíz MO, Monroy DMC. 2017. Ecological succession of plankton in a biofloc system with molasses as carbon source. Sci J Biol Sci. 6(7):222-228. https://doi.org/10.14196/sjbs.v6i7.2456
Jiménez–Ojeda YK, Collazos–Lasso LF, Arias– Castellanos JA. 2018. Dynamics and use of nitrogen in Biofloc Technology – BFT. AACL Bioflux. 11(4):1107-1129.
Korovchinsky NM. 1992. Sididae and holopediidae: (Crustacea: Daphniiformes). In: Bayly IAE. (Ed.), Guides to the identification of the macroinvertebrates of the continental waters of the world. SPB Academic Pub., Hague, Netherlands. 82 p.
Kubitza F. 2017. A relação entre pH, gás carbônico, alcalinidade e dureza sua influência no desempenho e saúde dos peixes e camarões. Rev Panorama de AQÜICULTURA. Disponible en: https://panoramadaaquicultura.com.br/a-agua-na-aquicultura-parte-2/>
Li J, Liu G, Li C, Deng Y, Tadda MA, Lan L, Liu D. 2018. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture. 495:919-931. https://doi.org/10.1016/j.aquaculture.2018.06.078
Lima PCM. 2017. Efeito da adição de Chlorella Vulgaris e melaço na qualidade da água e cresci¬mento de alevinos de tilápia do nilo (Oreochromis niloticus) em sistemas de bioflocs com baixa salinidade. Dissertação de mestrado. Programa de Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Recife. 62 p.
Machado–Allison A. 1992. Larval Ecology of Fish of the Orinoco Basin. W. C. Hamlett (ed.). Reproductive Biology of South American Vertebrates. Springer-Verlag New York. Inc. pp. 45-48.
Manrique L, Peláez M. 2013. Manual de análisis de calidad de aguas en ecosistemas acuáticos andino-amazónicos: análisis físicos y químicos. Vicerrectoría de investigaciones, Universidad de la Amazonia, Florencia, Colombia. 179 p.
Martins GB, Tarouco F, Rosa CE, Robaldo RB. 2017. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (O.niloticus). Aquaculture. 468:10-17. https://doi.org/10.1016/j.aquaculture.2016.09.046
Martins MA, Poli MA, Legarda EC, Pinheiro IC, Carneiro RFS, Pereira SA, do Nascimento Vieira F. 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture. pp. 734517. https://doi.org/10.1016/j.aquaculture.2019.734517
Miranda–Baeza A, Nolasco–López M, Rivas–Vega ME, Huerta–Rábago KJA, Martínez–Córdova LR, Martínez–Porchas M. 2019. Short-term effect of the inoculation of probiotics in mature bioflocs: Water quality parameters and abun¬dance of heterotrophic and ammonia-oxidizing bacteria. Aquac Res. 51(2):255-264. https://doi.org/10.1111/are.14371
Monroy–Dosta MC, De Lara–Andrade R, Castro– Mejía J, Castro–Mejía G, Coelho-Emerenciano MG. 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Rev Biol Mar Ocea¬nogr. 48(3):511-520. https://doi.org/10.4067/S0718-19572013000300009
Moreno JR, Medina CD, Albarracín VH. 2012. Aspectos ecológicos y metodológicos del muestreo, identificación y cuantificación de cianobacterias y microalgas eucariotas. Reduca (Biología). 5(5):110-125.
Poli MA, Schveitzer R, De Oliveira Nuñer AP. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquac Eng. 66:17-21. https://doi.org/10.1016/j.aquaeng.2015.01.004
Ray AJ, Seaborn G, Leffler JW, Wilde SB, Lawson A, Browdy CL. 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture. 310(1-2):130-138. https://doi.org/10.1016/j.aquaculture.2010.10.019
Ray AJ, Lotz JM. 2014. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquac Eng. 63:54-61. https://doi.org/10.1016/j.aquaeng.2014.10.001
Rieradevall SM. 1987. Atlas de los Microorganismos de Agua dulce. La vida es una gota de agua dulce. Barcelona: Ediciones Omega, S.A. pp. 275-291.
Rogers DC, Thorp JH (Eds.). 2019. Thorp and Covich’s Freshwater Invertebrates. Vol 3: Keys to Palaearctic Fauna. Amsterdam, USA. Elsevier.
Stein LY, Klotz MG. 2016. The nitrogen cycle. Curr Biol. 26(3):R94–R98. https://doi.org/10.1016/j.cub.2015.12.021
Timmons MB, Ebeling JM, Wheaton FW, Sum¬merrfelt ST, Vinci BJ. 2002. Recirculating aquaculture systems. 2nd ed. New York: Cayuga Aqua Venture. 769 p.
Xu WJ, Morris TC, Samocha TM. 2016. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture. 453:169-175. https://doi.org/10.1016/j.aquaculture.2015.11.021
Zapata LK, Brito LO, Maciel De Lima PC, Vinatea ALA, Galvez AO, Cárdenas VJM. 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Bol Inst Pesca. 43(3):399-407. https://doi.org/10.20950/1678-2305.2017v43n3p399
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. S. M. Heredia-Fernández, M. del C. Monroy-Dosta, D. L. Desentis-Pérez, P. Negrete-Redondo, J. A. Mata-Sotres, J. A. Ramírez-Torrez. (2024). Efecto del uso de harina de plátano dominico (Musa simmonds) y tapioca (Manihot esculenta) como fuente de carbono en el cultivo de Barbo tigre (Puntius tetrazona) en sistema biofloc. JAINA Costas y Mares ante el Cambio Climático, 6(1), p.55. https://doi.org/10.26359/52462.0605.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2022 Revista de la Facultad de Medicina Veterinaria y de Zootecnia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This article is published under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
The authors retain copyright of their work and grant the journal the right of first publication.
Readers are free to copy and redistribute the material in any medium or format under the license terms, provided proper attribution is given, the work is not used for commercial purposes, and no modifications or derivatives are made.
© Revista de la Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, as the original publisher.