Publicado

2020-01-01

Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology

Predicción de emisiones y sumideros de CO2 del suelo debido a factores de manejo del suelo de Brachiaria decumbens usando Tier 2 metodología IPCC

DOI:

https://doi.org/10.15446/rfmvz.v67n1.87689

Palavras-chave:

carbon stocks, climate change, fertilizers, simulation (en)
stocks de C, cambio climático, fertilizantes, simulación (es)

Autores

  • Amanda Silva-Parra Facultad de Ciencias Agropecuarias y Recursos Naturales, Grupo de Investigación Innovación en Sistemas Agrícolas y Forestales ISAF, Universidad de los Llanos, Sede Barcelona. Villavicencio, Meta (Colombia).
  • Jairo Ricardo Mora-Delgado Departamento de Producción Pecuaria, Grupo de Investigación Sistemas Agroforestales Pecuarios, Universidad del Tolima. Barrio Santa Helena Parte Alta, Ibague, Tolima (Colombia).
  • Luz Barrera-Rojas Facultad de Ciencias Agropecuarias y Recursos Naturales, Grupo de Investigación Territorio y Ambiente. Universidad de los Llanos, Sede Barcelona. Villavicencio, Meta (Colombia)

Soil carbon sequestration refers to the process of transferring carbon dioxide (CO2) from the atmosphere into the soil. The objective of this research was to do a simulation of how soil management factors in pastures can contribute to mitigate climate change by reducing soil CO2-eq emissions due to increases of soil organic carbon.  In livestock systems of Cumaral (Meta), Colombia, IPCC Tier 2 methodology was used to compare changes in soils C stocks under (a) two pasture types: Brachiaria decumbens grass pastures (B1) and Brachiaria decumbens grass pastures associated with Pueraria phaseloides legume (B2); (b) four increasing doses of CaCO3: 0, 1.1, 2.2, 3.3 tons ha-1; (c) three sources of N, P, K fertilizers: 100 kg ha-1 Urea, 200 kg ha-1 Triple Superphosphate and 100 kg ha-1 Potassium Chloride. The statistical design was a randomized complete block design in factorial arrangement 2 x 4 x 3. Tukey test showed that the inclusion of kudzú in B. decumbens pasture (B2), 2.2 and 3.3 tons CaCO3 ha-1 in B1 and B2, and the fertilization of B1 with Urea and B2 with Triple Superphosphate showed a greater benefit in soil C accumulation and CO2-eq emissions neutralization. Adittional cluster analysis showed that B2 liming with higher lime doses regardless of the type of fertilizer used presented major soil C stored grouped in Cluster 1. We concluded that these soil management factors should be feasible to implement in pastures, that can help offset the negative effects of global climate change on livestock systems at tropical zones.

El secuestro de carbono en el suelo se refiere al proceso de transferencia de dióxido de carbono (CO2) de la atmósfera al suelo. El objetivo de esta investigación fue hacer una simulación de cómo los factores de manejo del suelo en pasturas, pueden contribuir a mitigar el cambio climático al reducir las emisiones de CO2-eq del suelo debido a los aumentos de acumulación de carbono orgánico en el suelo. En sistemas ganaderos de Cumaral (Meta), Colombia, se utilizó la métodología Tier 2 del Panel Intergubernamental sobre Cambio Climático (IPCC) para comparar los cambios en las existencias de C del suelo en (a) dos tipos de pasturas: pasturas de pasto Brachiaria decumbens (B1) y pasturas del pasto Brachiaria decumbens asociadas con leguminosa de Pueraria phaseloides (B2); cuatro dosis crecientes de CaCO3: 0, 1.1, 2.2, 3.3 tons ha-1; y (c) tres fuentes de fertiliantes N, P, K: 100 kg ha-1 Urea, 200 kg ha-1 Superfosfato triple y 100 kg ha-1 Cloruro de potasio. El diseño estadístico de este estudio fue un diseño de bloques completos al azar en arreglo factorial 2 x 4 x 3. El test de Tukey mostró que la inclusión de la leguminosa en la pastura (B2), la aplicación de 2.2 y 3.3 tons CaCO3-1 ha-1 y la fertilización de B1 con Urea y de B2 con Superfosfato triple mostraron un mayor beneficio en la acumulación de C del suelo y la neutralización de las emisiones de CO2-eq. El análisis de cluster adicional mostró que B2 encalada con más altas dosis de cal indistintamente del tipo de fertilizante usado presentaron mayor almacenamiento de C del suelo agrupados en el Cluster 1. Nosotros concluimos que estos factores de manejo de suelos deberían ser factibles de implementar en pasturas, lo que puede ayudar a compensar los efectos negativos del cambio climático global en los sistemas ganaderos de zonas tropicales.

Referências

Anderson-Teixeira KJ, Wang MMH, McGarvey JC, LeBauer DS. 2016. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biol. 22(5): 1690-709. Doi: 10.1111/gcb.13226.

Alexander P, Paustian K, Smith P, Moran D. 2015. The economics of soil C sequestration and agricultural emissions abatement. Soil. 1: 331-339. Doi: https://doi.org/10.5194/soil-1-331-2015.

Bennett JMCL, Greene RSB, Murphy BW, Hocking P, Tongway D. 2014. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semi-arid environment of New South Wales. Soil Res. 52: 120-128. Doi: 10.1071/SR13118

Castro H, Gómez M. 2010. Fertilidad de suelos y Fertilizantes. En: Ciencia del suelo. Mojica y Burbano, editors. Principios Básicos. Bogotá (CO): Ed. Guadalupe S.A. Sociedad Colombiana de la Ciencia del Suelo.. p. 217-303.

Chambers A, Lal R, Paustian K. 2016. Soil carbon sequestration potential of US croplands and grasslands: Implementing the 4 per Thousand Initiative. J Soil Water Conserv. 71(3): 68A-74A. Doi: 10.2489/jswc.71.3.68A

Chen Q, Hooper DU, Lin S. 2011. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PloS One 6: e16909.

Conant RT, Paustian K, Elliott ET. 2001. Grassland management and conversion into grassland: Effects on soil carbon. Ecol Appl. 11: 343–355.

Corrêa AL, Abboud ACS, Guerra JGM, Aguiar LA de, Ribeiro RLD. 2014. Green manuring with Crotalaria consortium to babycorn predating the cabbage leaf under organic management. Rev Ceres. 61(6): 956-963. Doi: 10.1590/0034-737X201461060010

Fisher MJ, Braz SP, Dos Santos RSM, Urquiaga Alves BJR, Boddey RM. 2007. Another dimension to grazing systems: Soil Carbon. Trop. Grassl. 41: 65-83.

Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao JP, Cornelissen JHC. 2013. Linking litter decomposition of above and belowground organs to plant-soil feedbacks worldwide. J Ecol 101: 943–952. Doi: 10.1111/1365-2745.12092

Gibbons JM, Williamson JC, Williams AP, Withers PJA, Hockley N, Harris IM, Hughes JW, Taylor RL, Jones DL, Healey JR. 2014. Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade‐off between lime application and greenhouse gas emissions. Agr Ecosyst Enviro. 188: 48–56. Doi: 10.1016/j.agee.2014.02.016

Goulding KWT. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage. 32(3): 390–399. Doi: 10.1111/sum.12270.

Guan XK, Turner NC, Song L, Gu YJ, Wang TC, Li FM. 2016. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil. Biogeosci. 13: 527–534. Doi: 10.5194/bg-13-527-2016.

[ICA] Instituto Colombiano Agropecuario. 2020. Censo pecuario año 2020 [Internet]. Bogotá (CO): ICA; [citado 2020 ene 10].Disponible en: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018

[IGAC] Instituto Geográfico Agustín Codazi. 2016. Métodos analíticos del laboratorio de suelos. sexta edición. Bogotá (CO): IGAC / Imprenta Nacional de Colombia. 648p.

[IPCC] Intergovernmental Panel on Climate Change. 2006. Guidelines for National Greenhouse Gas Inventories. In: Eggleston HS, Buendia HS, Miwa l, Ngara K, Tanabe K. (Ed.). Agriculture, Forestry and Other Land Use. Hayama: Nacional Greenhouse Gas Inventories Programme. The Intergovernmental Panel on Climate Change. Institute for Global Environmental Strategies (IGES). 595p.

[IPCC] Intergovernmental Panel on Climate Change. 2014. Fifth Assessment Report: Synthesis Report. Cambridge, UK: Cambridge University Press.

Lal R. 2014. Societal value of soil carbon. J Soil Water Conserv. 69(6): 186A-192A.

Lal R. 2015. Cover cropping and the “4 per thousand proposal”. J Soil Water Conserv. 70(6): 141A. Doi: 10.2489/jswc.70.6.141A.

Moreta DE, Arango J, Sotelo M, Vergara D, Rincón A, Ishitani M, et al. 2014. Biological nitrification inhibition (BNI) in Brachiaria pastures: A novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change. Trop Grassl. 2(1): 88–91. Doi: 10.17138/tgft(2)88-91.

Mosquera O, Buurman P, Ramírez B, Amezquita MC. 2012. Carbon stocks and dynamics under improved tropical pasture and silvopastoral systems in Colombian Amazonia. Geoderma. 189-190: 81–86. Doi: 10.1016/j.geoderma.2012.04.022

Naranjo JF, Cuartas CA, Murgueitio E, Chará J, Barahona R. 2012. Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livestock Res Rural Dev. 24(8). Available from: http://www.lrrd.org/lrrd24/8/nara24150.htm

Olsen KR. 2013. Soil organic carbon sequestration, storage, retention and loss in US Croplands: Issues paper for protocol development. Geoderma. 195/196: 201-206.

Paradelo R, Virto I, Chenu C. 2015. Net effect of liming on soil organic carbon stocks: a review. Agr Ecosyst Environ. 202: 98–107. Doi: 10.1016/j.agee.2015.01.005

Parra AS, Mora-Delgado J. 2017. Emission factors estimated from enteric methane of dairy cattle in Andean zone using the IPCC Tier-2 methodology. Agrof Systems. 1-9, 2017. Doi: 10.1007/s10457-017-0177-3

Parra AS, de Figueiredo EB, de Bordonal RO, et al. 2019. Greenhouse gas emissions in conversion from extensive pasture to other agricultural systems in the Andean region of Colombia. Environ Dev Sustain. 21: 249, 2019. Doi: 10.1007/s10668-017-0034-6

Poeplau C, Don A. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma. 192: 189-201. Doi: 10.1016/j.geoderma.2012.08.003

Raji BA, Ogunwole JO. 2006. Potential of soil carbon sequestration under various landuse in the sub-humid and semi-arid savanna of Nigeria: Lessons from long-term experiments, Int. J. Soil Sci. 1: 33-43. Doi: 10.3923/ijss.2006.33.43.

Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agricultura. Plant Soil. 349: 121–156. Doi: 10.1007/s11104-011-0950-4

Rigueiro-Rodríguez A, López-Díaz ML, Mosquera-Losada MR. 2011. Organic Matter and Chromium Evolution in Herbage and Soil in a Pinus radiata Silvopastoral System in Northwest Spain after Sewage Sludge and Lime. Application Commun Soil Sci Plant Anal. 42: 1551–1564.

Sainju UM, Senwo ZN, Nyakatawa EZ, Tazisong IA, Reddy KC. 2008. Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agr Ecosyst Environ. 127: 234–240.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th ed. Washington DC, USA: USDA National Soil Conservation Service. 331–332p.

Sperow M. 2016. Estimating carbon sequestration potential on US agricultural topsoils. Soil Till Res. 155: 390-400.

Silva A, Garay S, Gómez AS. 2018. Alnus acuminata Kunth impact on N2O fluxes and quality of Pennisetum clandestinum Hochst. ex Chiov. Grass. Colomb. For. 21(1): 47-57. Doi: 10.14483/2256201X.11629

Silva A, Orozco D. 2018. Evaluation of C losses and gains rates associated to CO2 emissions and absortions in Ariari productive systems. Bistua. 16(1): 124-128, 2018.

Swan A, Williams SA, Brown K, Chambers A, Creque J, Wick J, Paustian K. 2015. COMET-Planner. Carbon and greenhouse gas evaluation for NRCS conservation practice planning. A companion report to www.comet-planner.com. http://comet-planner.nrel.colostate.edu/ COMET-Planner_Report_Final.pdf.

Thornton P, Herrero M. 2010. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proceedings of the National Academy of Sciences of the United States of America. 107: 19667–19672. doi: 10.1073/pnas.0912890107

Tiemann TT, Franco LH, Peters M, Frossard E, Kreuzer M, Lascano CE, Hess HD. 2009. Effect of season, soil type and fertilizer on the biomass production and chemical composition of five tropical shrub legumes with forage potential. Grass Forage Sci. 64: 255–265.

Como Citar

APA

Silva-Parra, A., Mora-Delgado, J. R. e Barrera-Rojas, L. (2020). Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 67(1), 72–87. https://doi.org/10.15446/rfmvz.v67n1.87689

ACM

[1]
Silva-Parra, A., Mora-Delgado, J.R. e Barrera-Rojas, L. 2020. Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology. Revista de la Facultad de Medicina Veterinaria y de Zootecnia. 67, 1 (jan. 2020), 72–87. DOI:https://doi.org/10.15446/rfmvz.v67n1.87689.

ACS

(1)
Silva-Parra, A.; Mora-Delgado, J. R.; Barrera-Rojas, L. Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology. Rev. Med. Vet. Zoot. 2020, 67, 72-87.

ABNT

SILVA-PARRA, A.; MORA-DELGADO, J. R.; BARRERA-ROJAS, L. Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, [S. l.], v. 67, n. 1, p. 72–87, 2020. DOI: 10.15446/rfmvz.v67n1.87689. Disponível em: https://revistas.unal.edu.co/index.php/remevez/article/view/87689. Acesso em: 12 jul. 2024.

Chicago

Silva-Parra, Amanda, Jairo Ricardo Mora-Delgado, e Luz Barrera-Rojas. 2020. “Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology”. Revista De La Facultad De Medicina Veterinaria Y De Zootecnia 67 (1):72-87. https://doi.org/10.15446/rfmvz.v67n1.87689.

Harvard

Silva-Parra, A., Mora-Delgado, J. R. e Barrera-Rojas, L. (2020) “Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology”, Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 67(1), p. 72–87. doi: 10.15446/rfmvz.v67n1.87689.

IEEE

[1]
A. Silva-Parra, J. R. Mora-Delgado, e L. Barrera-Rojas, “Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology”, Rev. Med. Vet. Zoot., vol. 67, nº 1, p. 72–87, jan. 2020.

MLA

Silva-Parra, A., J. R. Mora-Delgado, e L. Barrera-Rojas. “Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology”. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, vol. 67, nº 1, janeiro de 2020, p. 72-87, doi:10.15446/rfmvz.v67n1.87689.

Turabian

Silva-Parra, Amanda, Jairo Ricardo Mora-Delgado, e Luz Barrera-Rojas. “Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology”. Revista de la Facultad de Medicina Veterinaria y de Zootecnia 67, no. 1 (janeiro 1, 2020): 72–87. Acessado julho 12, 2024. https://revistas.unal.edu.co/index.php/remevez/article/view/87689.

Vancouver

1.
Silva-Parra A, Mora-Delgado JR, Barrera-Rojas L. Predicting soil CO2 emissions and sinks due to soil management factors of Brachiaria decumbens pastures using Tier 2 IPCC Methodology. Rev. Med. Vet. Zoot. [Internet]. 1º de janeiro de 2020 [citado 12º de julho de 2024];67(1):72-87. Disponível em: https://revistas.unal.edu.co/index.php/remevez/article/view/87689

Baixar Citação

CrossRef Cited-by

CrossRef citations1

1. Wan-Li Lao, Xiao-Ling Li, Ying-Chun Gong, Xin-Fang Duan. (2023). Carbon Dioxide Emission Evaluations in the Chinese Furniture Manufacturing Industry Using the IPCC Tier-2 Methodology. Forest Products Journal, 73(1), p.6. https://doi.org/10.13073/FPJ-D-22-00023.

Dimensions

PlumX

Acessos à página de resumo

413

Downloads

Não há dados estatísticos.