Identificación y secuenciación de SARS-CoV-2 en una leona africana (Panthera leo), bajo el cuidado técnico profesional, en Colombia
Identification and genomic sequencing of SARS-CoV-2 in an African lioness (Panthera leo), under professional technical care in Colombia
DOI:
https://doi.org/10.15446/rsap.v24n2.104984Palabras clave:
PCR, infecciones por coronavirus, leones, animales salvajes, secuencia Illumina (es)RT-qPCR, coronavirus infections, lions, wild animals, illumina sequence (en)
Descargas
Objetivo Identificar y caracterizar el virus SARS-CoV-2 en una leona africana (Panthera leo), hembra, de edad avanzada, que presentó por varios meses signos relacionados con enfermedad respiratoria atípica.
Métodos Se tomaron muestras de hisopados nasales 23 días después de haber reportado secreción nasal inicial. Se realizó la detección del virus SARS-Cov2 mediante RT-qPCR y posteriormente se caracterizó el genoma completo mediante secuencia Illumina.
Resultados Desde el punto de vista clínico, los resultados encontrados en las muestras de sangre no mostraron cambios evidentes que se pudieran relacionar con el virus o con todos los signos descritos desde el inicio del caso. Para la secuenciación genómica los análisis mostraron una alineación múltiple comparativa entre los tres genomas (muestra Leona, FIP u NC_045512 [Wu han]) por medio de Mauve, centrado en los genes Spike, E y M (archivo complementario, parte B). Se logró identificar 5 segmentos muy similares entre Leona y NC_045512 (Wuhan).
Conclusiones Es necesario adelantar más investigaciones para estandarizar el diagnóstico de esta patología en los animales. Así mismo, se requieren estudios genómicos en estas especies. Además, se evidenció con la revisión del estado de la cuestión que existen muchos vacíos del conocimiento en la implicación zoonótica de la pandemia y en el conocimiento de este virus en animales domésticos y silvestres, lo que supone un reto importante para las investigaciones de aquí en adelante.
Objective To identify and characterize the SARS-CoV-2 virus in an elderly African lioness (Panthera leo) that presented signs related to atypical respiratory disease for several months.
Methods Nasal swab samples were taken 23 days after infection. have reported initial nasal discharge.
Results The SARS-Cov2 virus was detected by RT-qPCR and the complete genome was subsequently characterized by Illumina sequencing. The results found in the blood samples did not show obvious changes that could be related to the virus or to the signs described from the beginning of the case. For genomic sequencing the analyzes showed a comparative multiple alignment between the three genomes (sample Leona, FIP or NC_045512 (Wu han)) by means of Mauve, focusing on the Spike, E and M genes (Supplementary file, part B); 5 very similar segments between Leona and NC_045512 (Wuhan) was identified.
Conclusions It is necessary to carry out more research to standardize the diagnosis of this pathology in animals and guarantee access to it. Also, genomic studies in these species. Additionally, it was evidenced with the literature review that there are many knowledge gaps in the zoonotic implication of the Pandemic and in the knowledge of this virus in domestic and wild animals, which represents an important challenge for research from now on.
Referencias
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 24:91-8. https://doi.org/10.1016/j.jare.2020.03.005. DOI: https://doi.org/10.1016/j.jare.2020.03.005
Caraza JA, Quijano IS, Barbosa AB, Victoria JM, Jaramillo P. Acciones en atención clínica de perros y gatos durante la pandemia del SARS-COV-2 (COVID-19). COVID REMEVET. [Internet] 2020; 4(3):117-22. http://hdl.handle.net/20.500.11799/109007.
Pedraza N, Zambrano D, Jaramillo DA, SARS-CoV-2 Lo Existente al Respecto de la Interrelación entre Animales y Humanos. Academia Colombiana de Ciencias Veterinarias [Internet]. 2020 [cited 2021 Oct 1]; 8(2):64-70. https://bit.ly/3JogOw7.
Fuentes G, Ramírez LM. SARS-CoV-2: ¿Qué pasa en animales domésticos y silvestres? Rarió Guendarutubi. 2020; 3(9):112-30. DOI: https://doi.org/10.53331/rar.v3i9.6421
Yánez A, Ortuño D. Coronavirosis: signos y síntomas con un enfoque en SARS CoV-2. Una revisión comparativa entre especies. Revista Bio Ciencias. 2020; 7:1-25. https://doi.org/10.15741/revbio.07.e1050. DOI: https://doi.org/10.15741/revbio.07.e1050
Khan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, Khan M, et al. COVID-19: A global challenge with old history, epidemiology and progress so far. Molecules. 2020; 26(1):39. https://doi.org/10.3390/molecules26010039. DOI: https://doi.org/10.3390/molecules26010039
Huang X, Zhang C, Pearce R, Omenn GS, Zhang Y. Identifying the Zoonotic Origin of SARS-CoV-2 by Modeling the Binding Affinity between the Spike Receptor-Binding Domain and Host ACE2. J Proteome Res. 2020; 19(12):4844-56. https://doi.org/10.1021/acs.jproteome.0c00717. DOI: https://doi.org/10.1021/acs.jproteome.0c00717
Ravelomanantsoa NA, Guth S, Andrianiaina A, Andry S, Gentles A, Ranaivoson HC. The zoonotic potential of bat-borne coronaviruses. Emerg Top Life Sci. 2020; 4(4):353-69. https://doi.org/10.1042/ETLS20200097. DOI: https://doi.org/10.1042/ETLS20200097
Kiss I, Kecskeméti S, Tanyi J, Klingeborn B, Belák S. Prevalence and genetic pattern of feline coronaviruses in urban cat populations. Vet J. 2000; 159(1):64-70. https://doi.org/10.1053/tvjl.1999.0402. DOI: https://doi.org/10.1053/tvjl.1999.0402
Stout AE, André NM, Whittaker GR. Feline coronavirus and feline infectious peritonitis in nondomestic felid species. J Zoo Wildl Med. 2021; 52(1):14-27. https://doi.org/10.1638/2020-0134. DOI: https://doi.org/10.1638/2020-0134
Zhang G, Li B, Yoo D, Qin T, Zhang X, Jia Y, et al. Animal coronaviruses and SARS-CoV-2. Transboundary and emerging diseases. 2021; 68(3):1097-110. https://doi.org/10.1111/tbed.13791. DOI: https://doi.org/10.1111/tbed.13791
Perera KD, Galasiti Kankanamalage AC, Rathnayake AD, Honeyfield A, Groutas W, Chang KO, et al. Protease inhibitors broadly effective against feline, ferret and mink coronaviruses. Antiviral research. 2018;160:79-86. https://doi.org/10.1016%2Fj.antiviral.2018.10.015. DOI: https://doi.org/10.1016/j.antiviral.2018.10.015
Paltrinieri S, Rossi G, Giordano A. Relationship between rate of infection and markers of inflammation/immunity in Holy Birman cats with feline coronavirus. Research in Veterinary Science. 2014; 97(2):263-70. DOI: https://doi.org/10.1016/j.rvsc.2014.08.009
Bálint Á, Farsang A, Szeredi L, Zádori Z, Belák S. Recombinant feline coronaviruses as vaccine candidates confer protection in SPF but not in conventional cats. Vet Microbiol. 2014; 169(3-4):154-62. https://doi.org/10.1016%2Fj.vetmic.2013.10.015. DOI: https://doi.org/10.1016/j.vetmic.2013.10.015
Chang HW, de Groot RJ, Egberink HF, Rottier PJ. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol. 2010; 91(Pt 2):415-20. https://doi.org/10.1099/vir.0.016485-0. DOI: https://doi.org/10.1099/vir.0.016485-0
Bell ET, Malik R, Norris JM. The relationship between the feline coronavirus antibody titre and the age, breed, gender and health status of Australian cats. Aus Vet J. 2006; 84(1-2):2-7. https://doi.org/10.1111/j.1751-0813.2006.tb13114.x. DOI: https://doi.org/10.1111/j.1751-0813.2006.tb13114.x
MGIEasy Nucleic Acid Extraction Kit User Manual. Version A2.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020; 25(3):2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045. DOI: https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
Ewels P, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020; 38:276-8. https://doi.org/10.1038/s41587-020-0439-x. DOI: https://doi.org/10.1038/s41587-020-0439-x
Altschul S, Gish W, Miller W, Myers W, Lipman J. Basic local alignment search tool. J Mol Biol. 1990; 215:403-10. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
Jaimes J, Whittaker G. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology. 2018; 517:108-21. https://doi.org/10.1016/j.virol.2017.12.027. DOI: https://doi.org/10.1016/j.virol.2017.12.027
Vuong W, Khan M, Fischer C, Arutyunova E, Lamer T, Shields J, et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun. 2020; 11(1):4282. https://doi.org/10.1038/s41467-020-18096-2. DOI: https://doi.org/10.1038/s41467-020-18096-2
Darling A, Mau B, Blattner F, Perna N. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004; 14(7):1394-403. https://doi.org/10.1101/gr.2289704. DOI: https://doi.org/10.1101/gr.2289704
Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 2020. https://10.1038/s41587-020-0439-x.
Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020; 26(5):681-7. https://doi.org/10.1038/s41591-020-0868-6. DOI: https://doi.org/10.1038/s41591-020-0868-6
Serrano PJ, Estivill G, Cabezudo P, Reyes J, Ciano N, Aguilar M, et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic. Neurologia (Engl Ed). 2020; 35(4):245-51. https://doi.org/10.1016/j.nrl.2020.04.002. DOI: https://doi.org/10.1016/j.nrleng.2020.04.002
Sanz P, Arguedas L, Mostacero S, Cabrera T, Jose J, Domingo S. Involvement of the digestive system in covid-19. A review. Gastroenterol Hepatol 2020; 43(8):464-71. https://doi.org/10.1016%2Fj.gastrohep.2020.06.004. DOI: https://doi.org/10.1016/j.gastre.2020.06.004
Agudelo AN, Villamil LC. Políticas públicas de zoonosis en Colombia. 1975-2014. Un abordaje desde la ciencia política y la salud pública. Rev. Salud Pública (Bogotá). 2017; 19(6):787-94. https://doi.org/10.15446/rsap.v19n6.72109. DOI: https://doi.org/10.15446/rsap.v19n6.72109
Agudelo AN, Villamil LC. Políticas de zoonosis en Colombia: del Código Sanitario a la salud ambiental. Rev. Salud Pública (Bogotá). 2018; 20(1):34-44. https://doi.org/10.15446/rsap.v20n1.72816. DOI: https://doi.org/10.15446/rsap.v20n1.72816
McFadden T, Marretta SM. Consequences of Untreated Periodontal Disease in Dogs and Cats. J Vet Dent. 2013; 30(4):266-75. https://doi.org/10.1177/089875641303000413. DOI: https://doi.org/10.1177/089875641303000413
Harvey C. Management of periodontal disease: understanding the options. Vet Clin North Am Small Anim Pract. 2005; 35(4):819-36. https://doi.org/10.1016/j.cvsm.2005.03.002. DOI: https://doi.org/10.1016/j.cvsm.2005.03.002
Temma S, Barbarino A, Maso D, Behillil S, Enouf V, Houn C, et al. Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. One health. 2020; 10:1-4. https://doi.org/10.1016/j.onehlt.2020.100164. DOI: https://doi.org/10.1016/j.onehlt.2020.100164
Chaves A, Montecino L. Wildlife rehabilitation centers as a potential source of transmission of SARS-CoV-2 into native wildlife of Latin America. Biotropica. 2021; 53(4):987-93. DOI: https://doi.org/10.1111/btp.12965
Gonçalves A, Maisonnasse P, Donati F, Behillil S, Contreras V, Naninck T, et al. SARS-CoV-2 viral dynamics in non-human primates. Plos Comput Biol. 2021; 17(3):e1008785. https://doi.org/10.1371/journal.pcbi.1008785. DOI: https://doi.org/10.1371/journal.pcbi.1008785
Seema S, Vineet D. The search for a COVID-19 animal model. Science. 2020; 368:942-3. https://doi.org/10.1126/science.abc6141. DOI: https://doi.org/10.1126/science.abc6141
Medina G. Ecología de enfermedades infecciosas emergentes y conservación de especies silvestres. Arch. med. vet. 2010; 42(1):11-24. http://dx.doi.org/10.4067/S0301-732X2010000100003. DOI: https://doi.org/10.4067/S0301-732X2010000100003
Tobajas J. Riesgos genéticos y sanitarios asociados al gato asilvestra- do (Felis silvestris catus): el caso de los felinos salvajes de la penínsu- la ibérica. Chronica naturae. 2016; 6:63-82.
Cabello C, Cabello F. Zoonosis con reservorios silvestres: Amenazas a la salud pública y a la economía. Rev Méd Chile. 2008; (136):385-93. http://dx.doi.org/10.4067/S0034-98872008000300016. DOI: https://doi.org/10.4067/S0034-98872008000300016
Monsalve S, Mattar S, González M. Zoonosis transmitidas por animales silvestres y su impacto en las enfermedades emergentes y reemer- gentes. Rev. MVZ Córdoba. 2009; (2):1762-73. DOI: https://doi.org/10.21897/rmvz.361
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta revista provee acceso libre inmediato a su contenido bajo el principio de que hacer disponible gratuitamente investigación al publico apoya a un mayor intercambio de conocimiento global.
Todos los contenidos de esta revista, excepto dónde está identificado, están publicados bajo una Licencia Creative Commons Atribución 4.0.