Equations based on body mass index for body composition estimations of women presenting grade III obesity
Ecuaciones a partir del índice de masa corporal para estimar la composición corporal de mujeres con obesidad III
DOI:
https://doi.org/10.15446/rsap.v25n2.105516Palabras clave:
Severe obesity, body mass index, body composition, bioimpedance (en)Obesidad mórbida, índice de masa corporal (IMC), composición corporal, bioimpendacia (es)
Descargas
Objective To develop and validate predictive equations to estimate the body composition of women with grade III obesity, using the body mass index (BMI) as a predictive variable.
Methods This cross-sectional study involved 104 patients treated at the hospital of the Universidade Federal do Rio de Janeiro randomly divided into two groups, the Equation Group, used to generate regression equations, and the Validation Group, used to vali- date the equations. Body fat mass (BFM), body fat percentage (BFP), skeletal muscle mass (SMM), fat-free mass (FFM) and total body water content (TBW) were valuated employing the bioimpedance method (InBody® 230).
Results Polynomial equations exhibited the best fit and a general trend of results normalized by height squared presenting higher coefficients of determination (r2) was noted, positively affecting equation validations. Only one exception was observed, since the body fat percentage index (BFPI) resulted in an even lower correlation with BMI. Only these variables exhibited low r2 (0.11 to 0.29), while r2 values ranged from 0.51 to 0.94 for the other results.
Conclusion Except for the BFP and BFPI, body composition can be estimated by the application of predictive BMI-based models. The equations employed for the indices normalized by the square of height were better predictors, while the use of equations that do not employ this normalization should consider the caveat that individuals with extreme BMI values (40 to 76 kg/m2) present greater estimate deviations in relation to the measured values.
Objetivo Desarrollar y validar ecuaciones predictivas para estimar la composición corporal de mujeres con obesidad III, utilizando el índice de masa corporal (IMC) como variable predictiva.
Métodos Este estudio transversal involucró a 104 pacientes atendidos por el Hospital Universitario de la Universidad Federal de Río de Janeiro, divididos aleatoriamente en dos grupos. La masa de grasa corporal (MGC), el porcentaje de grasa corporal (PGC), la masa musculoesquelética (MME), la masa libre de grasa (MLG) y el contenido de agua total (ACT) fueron valorados por el método de bioimpedancia (InBody® 230).
Resultados Las ecuaciones polinómicas presentaron un mejor ajuste y se observó una tendencia general de resultados normalizados, con mayores coeficientes de determinación (r2), lo cual afectó positivamente las validaciones de las ecuaciones. Se observó apenas una excepción, en relación con el PGC, pues el índice de porcentaje de grasa corporal (IPGC) tuvo una correlación menor con el IMC. Estas variables exhibieron un r2 bajo (0,11 a 0,29). Los valores de r2 oscilaron entre 0,51 y 0,94 para los demás resultados.
Conclusión Con excepción del PGC y el IPGC, la composición corporal puede estimarse por medio de la aplicación de modelos predictivos basados en el IMC. Las ecuaciones empleadas por los índices normalizados por el cuadrado de la estatura fueron mejores predictores, en tanto que el uso de las ecuaciones que no emplean esa normalización debe considerar la advertencia de que individuos con valores extremos de IMC (40 a 76 kg/m2) presentan una mayor estimación de las desviaciones en relación con los valores medidos.
Referencias
Figueiredo BQ, Souto BOV, Nogueira CFR, Silva IT, Bernardes LBR, Peres MLA, et al. O enorme custo da obesidade para a saúde pública brasileira: Uma breve revisão de literatura. Res Soc Dev. 2021; 10(9):e33610918276. https://doi.org/10.33448/rsd-v10i9.18276.
Francischi RPP, Pereira LO, Freitas CS, Klopfer M, Santos RC, Vieira P, et al. Obesidade: atualização sobre sua etiologia, morbidade e tratamento. Rev Nutr. 2000; 13(1):17-28. https://doi.org/10.1590/S1415-52732000000100003.
Coutinho W. Consenso Latino-Americano de Obesidade. 1999; 43(1):21-67. https://doi.org/10.1590/S0004-27301999000100003.
Santo MA, Cecconello I. Morbid obesity: risks control. Arq Gastroenterol. 2008; 45(1):1-2. https://doi.org/10.1590/S0004-28032008000100001.
Quetelet MA. A treatise on man and the development of his faculties. Edinburgh: Publisher by William and Robert Chambers; 1842.
Van Itallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Height-normalized indices of the body's fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Cin Nuir. 1990; 52:953-9. https://doi.org/10.1093/ajcn/52.6.953.
Van Itallie TB. "Morbid" obesity: a hazardous disorder that resists con servative treatment. Am J Clin Nutr. 1980; 33(2):358-63. https://doi.org/10.1093/ajcn/33.2.358.
Renquist K. Obesity classification. Obes Surg. 1997; 7(6):523. https://doi.org/10.1381/096089297765555331.
Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987; 46(4):537-56. https://doi.org/10.1093/ajcn/46.4.537.
Ling CHY, de Craen AJM, Slagboom PE, Gunn DA, Stokkel MPM, Westendorp RGJ, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmen- tal body composition in middle-aged adult population. Clin Nutr. 2011; 30(5):610-5. https://doi.org/10.1016/j.clnu.2011.04.001.
Jakicic JM, Wing RR, Lang W. Bioelectrical impedance analysis to assess body composition in obese adult women: The effect of ethnicity. Int J Obes. 1998; 22(3):243-9. https://doi.org/10.1038/sj.ijo.0800576.
Strain GW, Wang J, Gagner M, Pomp A, Inabnet WB, Heymsfield SB. Bioimpedance for severe obesity: comparing research methods for total body water and resting energy expenditure. Obesity. 2008; 16(8):1953-6. https://doi.org/10.1038/oby.2008.321.
Haroun D, Taylor SJC, Viner RM, Hayward RS, Darch TS, Eaton S, et al. Validation of bioelectrical impedance analysis in adolescents across different ethnic groups. Obesity. 2010; 18(6):1252-9. https://doi.org/10.1038/oby.2009.344.
Kyle UG, Genton L, Gremion G, Slosman DO, Pichard C. Aging, physical activity and heightnormalized body composition parameters. Clin Nutr. 2004; 23(1):79-88. https://doi.org/10.1016/S0261 5614(03)00092-X.
Gurrici S, Hartriyanti Y, Hautvast J, Deurenberg P. Relationship between body fat and body mass index: differences between Indonesians and Dutch Caucasians. Eur J Clin Nutr. 1998; 52(11):779-83. https://doi.org/10.1038/sj.ejcn.1600637.
Peltz G, Aguirre MT, Sanderson M, Fadden MK. The role of fat mass index in determining obesity. Am J Hum Biol. 2010; 22(5):639-47. https://doi.org/10.1002/ajhb.21056.
Ho-Pham LT, Lai TQ, Nguyen MTT, Nguyen TV. Relationship between body mass index and percent body fat in Vietnamese: Implications for the diagnosis of obesity. Plos One. 2015; 10(5):e0127198. https://doi.org/10.1371/journal.pone.0127198.
Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutri- tion. 2001; 17:26-30. https://doi.org/10.1016/S0899-9007(00)00471-8.
Kyle UG, Bosaeus I, Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis. Part i: review of principles and methods. Clin Nutr. 2004; 23(5):1226-43. https://doi.org/10.1016/j.clnu.2004.06.004.
Van Itallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Hei- ght-normalized indices of the body's fat-free mass and fat mass: po- tentially useful indicators of nutritional status. Am J Clin Nuir. 1990; 52:953-9. https://doi.org/10.1093/ajcn/52.6.953.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 327:307-10. https://doi.org/10.1016/S0140-6736(86)90837-8.
Anjos LA. Índice de massa corporal (massa corporal.estatura-2) como indicador do estado nutricional de adultos: revisão da literatura. Rev Saúde Pública. 1992; 26(6):431-6. https://doi.org/10.1590/S0034-89101992000600009.
Van Haute M, Rondilla E, Vitug JL, Batin KD, Abrugar RE, Quitoriano F, et al. Assessment of a proposed BMI formula in predicting body fat percentage among Filipino young adults. Sci Rep. 2020; 10(1):21988. https://doi.org/10.1038/s41598-020-79041-3.
Akindele MO, Phillips JS, Igumbor EU. The relationship between body fat percentage and body mass index in overweight and obese individuals in an urban african setting. J Public Health Afr. 2016; 7(1):515. https://doi.org/10.4081/jphia.2016.515.
Jackson AS, Stanforth PR, Gagnon J, Rankinen T, Leon AS, Rao DC, et al. The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study. Int J Obes. 2002; 26(6):789-96. https://doi.org/10.1038/sj.ijo.0802006.
Malta DC, Silva AG, Tonaco LAB, Freitas MIF, Velasquez-Melendez G. Tendência temporal da prevalência de obesidade mórbida na população adulta brasileira entre os anos de 2006 e 2017. Cad Saúde Pública. 2019; 35(9):e00223518. https://doi.org/10.1590/0102-311x00223518.
World Health Organization W. Use and interpretation of anthropometric indicators of nutritional status. Bull World Health Organ. 1986; 64(6):929-41.
Borges KA, Andrade LF, Chagas LMO, Borges MF, Castro SS. Confiabilidade e validade do world health organization disability assessment schedule para pessoas com obesidade mórbida. Rev Ter Ocupacional Universidade São Paulo. 2019; 30(2):94-101. https://doi.org/10.11606/issn.2238-6149.v30i2p94-101.
Deurenberg P. Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am J Clin Nutr. 1996; 64 Suppl:449S-52S. https://doi.org/10.1093/ajcn/64.3.449S.
Metcalf B, Rabkin RA, Rabkin JM, Metcalf LJ, Lehman-Becker LB. Weight loss composition: the effects of exercise following obesity surgery as measured by bioelectrical impedance analysis. Obesity. 2005;15:183-6. https://doi.org/10.1381/0960892053268381.
Horie LM, Barbosa-Silva MCG, Torrinhas RS, Mello MT, Cecconello I, Waitzberg DL. New body fat prediction equations for severely obese patients. Clin Nutr. 2008; 27(3):350-6. https://doi.org/10.1016/j.clnu.2008.03.011.
Gómez-Ambrosi J, Silva C, Galofré JC, Escalada J, Santos S, Millán D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2012; 36(2):286-94. https://doi.org/10.1038/ijo.2011.100.
Azevedo BSS, Silva FA, Dias BKB, Souza MR, Fagundes CF, Almeida VR. Análise da perda de massa muscular esquelética a partir de achados de bioimpedância em uma coorte de pacientes submetidos à cirurgia bariátrica. Res Soc Dev. 2020; 9(11):e4889119874. https://doi.org/10.33448/rsd-v9i11.9874.
Mazzeo SE, Saunders R, Mitchell KS. Binge eating among African American and Caucasian bariatric surgery candidates. Eat Behav. 2005; 6(3):189-96. https://doi.org/10.1016/j.eatbeh.2004.12.001.
Dias PC, Henriques P, Anjos LA, Burlandy L. Obesidade e políticas públicas: concepções e estratégias adotadas pelo governo brasileiro. Cad Saúde Pública. 2017; 33(7):e00006016. https://doi.org/10.1590/0102-311x00006016.
Nilson EAF, Andrade RCS, Brito DA, Oliveira ML. Custos atribuíveis a obesidade, hipertensão e diabetes no Sistema Único de Saúde, Brasil, 2018. Rev Panam Salud Pública. 2020; 44:1. https://doi.org/10.26633/RPSP.2020.32.
Burlandy L, Teixeira MRM, Castro LMC, Cruz MCC, Santos CRB, Souza SR, et al. Modelos de assistência ao indivíduo com obesidade na atenção básica em saúde no Estado do Rio de Janeiro, Brasil. Cad Saúde Pública. 2020; 36(3):e00093419. https://doi.org/10.1590/0102-311x00093419.
Resende F, Rosado L, Franceschinni S, Rosado G, Ribeiro R, Marins JCB. Revisão crítica dos métodos disponíveis para avaliar a composição corporal em grandes estudos populacionais e clínicos. Arch Lati- noam Nutr. 2007; 57(4):327-34.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta revista provee acceso libre inmediato a su contenido bajo el principio de que hacer disponible gratuitamente investigación al publico apoya a un mayor intercambio de conocimiento global.
Todos los contenidos de esta revista, excepto dónde está identificado, están publicados bajo una Licencia Creative Commons Atribución 4.0.








