Evaluación de la exposición de ciclistas a la contaminación del aire: una revisión de la literatura
Evaluation of cyclists exposure to air pollution: a literature review
DOI:
https://doi.org/10.15446/rsap.v20n6.72744Palabras clave:
Contaminación del aire, ciclismo, exposición a riesgos ambientales, contaminantes ambientales, exposición por inhalación, transportes, salud pública, toxicología (es)Air pollution, bicycling, environmental exposurev environmental health, inhalation exposure, environmental pollutants, transportation, public health, toxicology (en)
Descargas
Objetivos Describir e interpretar las metodologías y resultados de los principales estudios relacionados con el monitoreo de contaminación atmosférica en ciclistas.
Métodos Se buscaron y analizaron las investigaciones a nivel nacional e internacional de los últimos diez años en las bases de datos Cochrane, Scopus, Embase, Science Direct y Pubmed. La búsqueda se realizó de Agosto a Septiembre del año 2017 usando los siguientes descriptores de búsqueda para MeSH: air pollution, bicycling, environmental exposure, enviromental health, inhalation exposure, environmental pollutants, transportation, public health y toxicology, y para DeCS: contaminación del aire, ciclismo, exposición a riesgos ambientales, contaminantes ambientales, inhalación, transportes, salud pública y toxicología.
Resultados Se identificaron diecinueve artículos publicados elegibles. La mayoría de los estudios se realizaron en Europa y Estados Unidos. En Latinoamérica se han reportado cuatro estudios. Otros estudios buscaban comparar la exposición en distintas rutas en bicicleta, comparar trayectos de una misma ruta, y otros determinar la relación distancia vs exposición. De igual manera, variables como el tráfico vehicular, la distancia a las fuentes de emisión y el tipo de ciclorruta, juegan un papel fundamental en la exposición a contaminantes en ciclistas.
Conclusiones Se encontraron diversas variables que influyen de forma directa o indirectamente en la exposición a la contaminación del aire de los usuarios de bicicleta, así como algunos factores que pueden reducir la exposición a estos contaminantes.
Objectives To describe and interpret the methodologies and results of the main studies related to the monitoring of exposure of cyclists to air pollution.
Methods Research and analysis of national and international research of the last ten years in the Cochrane, Scopus, Embase, Science Direct and Pubmed databases. The search was conducted in August and September 2017 using the following search descriptors for MeSH: air pollution, bicycle riding, environmental exposure, environmental health, exposure by inhalation, environmental pollutants, transportation, public health and toxicology. For DeCS: air Pollution, cycling, exposure to environmental risks, environmental pollutants, inhalation, transportation, public health and toxicology.
Results Nineteen eligible published articles were identified. Most studies were conducted in Europe and the United States. Four studies have been reported in South America. Other studies seek comparisons on different bicycle routes, compare exposure during variations of the same route, and others determine the distance-exposure relationship. In the same way, variables such as vehicular traffic, distance to the emission sources and the type of bike path, play a fundamental role in the exposure to pollutants in cyclists.
Conclusions Several variables were found that influence, directly or indirectly, the cyclists exposure to air pollution, as well as some factors that can reduce this exposure.
Referencias
International Agency for Research on Cancer (lARC)-World Health Organization (WHO). Outdoor air pollution a leading environmental cause of cancer deaths. IARC Sci Publ. 2013;161.
Organización Mundial de la Salud (OMS). Nueve de cada diez personas de todo el mundo respiran aire contaminado Sin embargo, cada vez hay más países que toman medidas [Internet]. [cited 2018 Jun 4]. Available from: Available from: http://bit.ly/2Es53o0 .
Rojas NY. Material particulado atmosferico y salud. Bogotá: Ediciones Uniandes, Facultad de ingerieria.; 2005.
Mu L, Deng F, Tian L, Li Y, Swanson M, Ying J, et al. Peak expiratory flow, breath rate and blood pressure in adults with changes in particulate matter air pollution during the Beijing Olympics: A panel study. Environ Res [Internet]. 2014;133:4-11.
Sykorová B, Kucbel M, Raclavsky K. Composition of airborne particulate matter in the industrial area versus mountain area. Perspect Sci [Internet]. 2016;7:369-72. Available from: http://bit.ly/2HJc1pi.
Singh S, Tiwari S, Hopke PK, Zhou C, Turner JR, Panicker AS, et al. Ambient black carbon particulate matter in the coal region of Dhanbad, India. Sci Total Environ [Internet]. 2018;615:955-63.
Rückerl R, Hampel R, Breitner S, Cyrys J, Kraus U, Carter J, et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int [Internet]. 2014;70:32-49.
Nishikawa M, Matsui I, Batdorj D, Jugder D, Mori I, Shimizu A, et al. Chemical composition of urban airborne particulate matter in Ulaan-baatar. Atmos Environ [Internet]. 2011;45(32):5710-5. Available from: http://bit.ly/2MkGjEL.
Fomba KW, van Pinxteren D, Müller K, Spindler G, Herrmann H. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmos Environ [Internet]. 2018;176(August 2017):60-70. Available from: http://bit.ly/2Et1OfQ.
Feng Y, Li Y, Cui L. Critical review of condensable particulate matter. Fuel [Internet]. 2018;224(February):801-13. Available from: http://bit.ly/2WqWIuO.
Wagner DR, Clark NW. Effects of ambient particulate matter on aerobic exercise performance. J Exerc Sci Fit [Internet]. 2018;16(1):12-5. Available from: http://bit.ly/2VNTayo.
Nieuwenhuijsen MJ, Basagaña X, Dadvand P, Martinez D, Cirach M, Beelen R, et al. Air pollution and human fertility rates. Environ Int. 2014;70:19-24.
Wu S, Deng F, Hao Y, Wang X, Zheng C, Lv H, et al. Fine particulate matter, temperature, and lung function in healthy adults: Findings from the HVNR study. Chemosphere [Internet]. 2014;108:168-74. Available from: http://dx.doi.org/10.1016/j.chemosphere.2014.01.032.
Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. Chemosphere. 2017;188:32-48.
Franck U, Odeh S, Wiedensohler A, Wehner B, Herbarth O. The effect of particle size on cardiovascular disorders - The smaller the worse. Sci Total Environ [Internet]. 2011;409(20):4217-21. Available from: http://dx.doi.org/10.1016/j.scitotenv.2011.05.049.
Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Martínez D, Carrasco-Turigas G, et al. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ Int [Internet]. 2016;97:45-55. Available from: http://dx.doi.org/10.1016/j.en-vint.2016.10.011.
de Nazelle A, Fruin S, Westerdahl D, Martinez D, Ripoll A, Kubesch N, et al. A travel mode comparison of commuters' exposures to air pollutants in Barcelona. Atmos Environ [Internet]. 2012;59:151-9. Available from: http://dx.doi.org/10.1016/j.atmosenv.2012.05.013.
Salud OM de la. OMS | ¿Qué se entiende por actividad moderada y actividad vigorosa? WHO [Internet]. 2013 [cited 2017 Nov 21]; Available from: Available from: http://www.who.int/dietphysicalactivity/physical_activity_intensity/es/ .
McCafferty WB. Air Pollution and Athletic Performance. 1981.
Rabl A, de Nazelle A. Benefits of shift from car to active transport. Transp Policy [Internet]. 2012;19(1):121-31. Available from: http://dx.doi.org/10.1016/j.tranpol.2011.09.008.
Berghmans P, Bleux N, Panis LI, Mishra VK, Torfs R, Van Poppel M. Exposure assessment of a cyclist to PM10 and ultrafine particles. Sci Total Environ [Internet]. 2009;407(4):1286-98. Available from: http://dx.doi.org/10.1016/j.scitotenv.2008.10.041.
Pattinson W, Kingham S, Longley I, Salmond J. Potential pollution exposure reductions from small-distance bicycle lane separations. J Transp Heal [Internet]. 2015; Available from: http://dx.doi.org/10.1016/j.jth.2016.10.002.
MacNaughton P, Melly S, Vallarino J, Adamkiewicz G, Spengler JD. Impact of bicycle route type on exposure to traffic-related air pollution. Sci Total Environ [Internet]. 2014;490(2):37-43. Available from: http://dx.doi.org/10.1016/j.scitotenv.2014.04.111.
U.S. Environmental Protection Agency (US EPA). Black Carbon Research [Internet]. [cited 2018 May 24]. Available from: Available from: https://www.epa.gov/air-research/black-carbon-research .
Zhang L, Guan Y, Leaderer BP, Holford TR. Estimating daily nitrogen dioxide level: Exploring traffic effects. Ann Appl Stat. 2013;7(3):1763-77.
US EPA O. Technical Data and Reports on Carbon Monoxide Measurements and SIP Status. [cited 2018 May 24]; Available from: Available from: https://www.epa.gov/co-pollution/technical-data-and-reports-carbon-monoxi-de-measurements-and-sip-status .
M. J. Nieuwenhuijsen & K. Determinants of Personal Exposure to PM2.5, Ultrafine Particle Counts, and CO in a Transport Microenvironment. Environ Sci Technol. 2009;43 (13):4737-4743.
Luc Int Panisab, Bas de Geusc, Grégory Vandenbulcked, Hanny Willemsa, Bart Degraeuwea, Nico Bleuxa, Vinit Mishraa, Isabelle Thomasd RM. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmos Environ. 2010;44(19):2263-70.
Morales Betancourt R, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, et al. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos Environ [Internet]. 2017;157(1):135-45. Available from: http://bit.ly/2JCHgWs.
Suárez L, Mesías S, Iglesias V, Silva C, Cáceres DD, Ruiz-Rudolph P. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ Sci Process Impacts [Internet]. 2014;16(6):1309-17. Available from: http://xlink.rsc.org/?DOI=-C3EM00648D.
Kingham S, Longley I, Salmond J, Pattinson W, Shrestha K. Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environ Pollut [Internet]. 2013;181:211-8. Available from: http://dx.doi.org/10.1016/j.envpol.2013.06.030
Fundéu BBVA. hora pico/hora punta | Fundéu BBVA [Internet]. 2011 [cited 2018 May 24]. Available from: Available from: http://bit.ly/2WkYWfb
Chertok M, Voukelatos A. Comparison of air pollution exposure for five commuting modes in Sydneycar, train, bus, bicycle and walking. Heal Promot J ... [Internet]. 2004;15(1):63-7. Available from: http://mono-graphs.iarc.fr/ENG/Classification/latest_classif.php.
Okokon EO, Yli-Tuomi T, Turunen AW, Taimisto P, Pennanen A, Vouitsis I, et al. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environ Res [Internet]. 2017;154(September 2016):181-9. Available from: http://dx.doi.org/10.1016/j.envres.2016.12.012
Franco JF. Urban Air Pollution in Bogota , Colombia: an Environmental Justice Perspective Urban Air Pollution in Bogota , Colombia : an Environmental Justice Perspective. 2016;(June 2012).
Fajardo OA, Rojas NY. Particulate matter exposure of bicycle path users in a high-altitude city. Atmos Environ. 2012;46:675-9.
Boogaard H, Borgman F, Kamminga J, Hoek G. Exposure to ultrafine and fine particles and noise during cycling and driving in 11 Dutch cities. Atmos Environ [Internet]. 2009;43(27):4234-42. Available from: http://dx.doi.org/10.1016/j.atmosenv.2009.05.035
Zuurbier M, Hoek G,Oldenwening M, Lenters V, Meliefste K, van den Hazel P, et al. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. 2010; 118(6):783-9.
Thai A, McKendry I, Brauer M. Particulate matter exposure along designated bicycle routes in Vancouver, British Columbia. Sci Total Environ. 2008;405(1-3):26-35.
H.S. Adams, M.J. Nieuwenhuijsen RNC. Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmos Environ [Internet]. 2001; 35:4557-66. Available from: http://bit.ly/2we1xZQ.
Vinzents PS, M0ller P, S0rensen M, Knudsen LE, Hertel O, Jensen FP, et al. Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect. 2005;113(11):1485-90.
Kittelson DB, Watts WF, Johnson JP. Nanoparticle emissions on Minnesota highways. Atmos Environ. 2004;38(1):9-19.
Montoya-Rendon M, Zapata-Saldarriaga P, Correa-Ochoa M. Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia. Rev. Salud Pública (Bogotá). ... [Internet]. 2013;15(1):103-15. Available from: http://bit.ly/2JAFgxU.
Zlatev Z, Georgiev K, Dimov I. Influence of climatic changes on pollution levels in the Balkan Peninsula. Comput Math with Appl [Internet]. 2013;65(3):544-62. Available from: http://dx.doi.org/10.1016/j.camwa.2012.07.006
Park HY, Gilbreath S, Barakatt E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ Heal A Glob Access Sci Source [Internet]. 2017;16(1):1-7. Available from: http://dx.doi.org/10.1186/s12940-017-0212-x
Strak M, Boogaard H, Meliefste K, Oldenwening M, Zuurbier M, Brunekreef B, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118-24.
Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect. 2011;119(10):1373-8.
Chaney RA, Sloan CD, Cooper VC, Robinson DR, Hendrickson NR, McCord TA, et al. Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway. PLoS One. 2017;12(11):1-15.
Ministerio de Transporte. Guia de ciclo-infraestructura para ciudades colombianas. 2016. 33 p.
Mueller N, Rojas-Rueda D, Cole-Hunter T, de Nazelle A, Dons E, Gerike R, et al. Health impact assessment of active transportation: A systematic review. Prev Med (Baltim) [Internet]. 2015;76:103-14. Available from: http://dx.doi.org/10.1016/j.ypmed.2015.04.010
Organización Mundial de la Salud (OMS). OMS Los efectos sobre la salud-Departamento de Salud Pública, Medio Ambiente y Determinantes Sociales de la Salud [Internet]. WHO. OMS; 2014 [cited 2018 May 24]. Available from: Available from: http://bit.ly/2EunIPW
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2019 Revista de Salud Pública

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta revista provee acceso libre inmediato a su contenido bajo el principio de que hacer disponible gratuitamente investigación al publico apoya a un mayor intercambio de conocimiento global.
Todos los contenidos de esta revista, excepto dónde está identificado, están publicados bajo una Licencia Creative Commons Atribución 4.0.