Publicado

2022-03-01

Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model

Determinantes de las tasas de mortalidad por COVID-19: un análisis de nivel macro mediante el modelo de regresión beta extendida

DOI:

https://doi.org/10.15446/rsap.v24n2.100449

Palavras-chave:

Mortalit, COVID-19, risk factors (en)
Mortalidad, COVID-19, factores de riesgo (es)

Downloads

Autores

Objective The specific mortality rate (MR) due to COVID-19 is a useful indicator for monitoring and evaluating the health strategies of health systems in the pandemic era. The main objective of this study is to estimate the effects of social, health, and economic factors on MRs in 176 countries.

Material and Methods Beta regression models were used, and MRs were estimated as the total number of deaths divided by the total number of confirmed cases (infection fatality rate) until December 2, 2021.

Results The primary findings revealed heterogeneity in mortality rates between regions and countries. The estimated coefficients showed different patterns of association between the explanatory variables and mortality rates. In the American region, the results showed a strange pattern and nearly insignificant effect for almost all variables. In Asian countries, we found a significant effect of GDP per capita and the share of the population aged 65 years and older on mortality rates, whereas on the African continent, the significant variables affecting mortality rates were GDP per capita, human development index, and share of population aged 65 years and older. Finally, in the European region, we did not find clear evidence of an association between the explanatory variables and mortality rates.

Conclusion These results show, in a heterogeneous way among regions, the impact of aging, development level and population density (especially with forms of distancing) on increasing the risk of death from the coronavirus. In conclusion, the pandemic has succeeded in demonstrating chaotic patterns of associations with social, health, and economic factors.

Objetivo La tasa de mortalidad específica (TM) por COVID-19 es un indicador útil para monitorear y evaluar las estrategias de salud de los sistemas de salud en la era de la pandemia. El objetivo principal de este estudio es estimar los efectos de los factores sociales, de salud y económicos sobre las RM en 176 países.

Materiales y Métodos Se utilizaron modelos de regresión Beta y las RM se estimaron como el número total de muertes dividido por el número total de casos confirmados (tasa de letalidad por infección) hasta el 2 de diciembre de 2021.

Resultados Los principales hallazgos revelaron heterogeneidad en las tasas de mortalidad entre regiones y países. Los coeficientes estimados mostraron diferentes patrones de asociación entre las variables explicativas y las tasas de mortalidad. En la región americana, los resultados mostraron un patrón extraño y un efecto casi insignificante para casi todas las variables. En los países asiáticos, encontramos un efecto significativo del PIB per cápita y la proporción de la población de 65 años o más sobre las tasas de mortalidad, mientras que en el continente africano, las variables significativas que afectaron las tasas de mortalidad fueron el PIB per cápita, el índice de desarrollo humano y porcentaje de la población de 65 años y más. Finalmente, en la región europea, no encontramos evidencia clara de una asociación entre las variables explicativas y las tasas de mortalidad.

Conclusión Estos resultados muestran, de manera heterogénea entre regiones, el impacto del envejecimiento, el nivel de desarrollo y la densidad de población (especialmente con formas de distanciamiento) en el aumento del riesgo de muerte por coronavirus. En conclusión, la pandemia ha logrado demostrar patrones caóticos de asociaciones con factores sociales, de salud y económicos.

Referências

World Health Organization. Weekly epidemiological update on COVID-19 - 28 December. [Internet]. Geneva: WHO; 2021 [cited 2021 Dec 1]. https://bityl.co/CAuO.

Alfano V, Ercolano S. The efficacy of lockdown against COVID-19: a cross-country panel analysis. Appl Health Econ Health Policy. 2020; 18:509-517. https://doi.org/10.1007/s40258-020-00596-3. DOI: https://doi.org/10.1007/s40258-020-00596-3

Legido-Quigley H, Asgari N, Ying Teo Y, Leung GM, Oshitani H, Fukuda K, et al. Are high-performing health systems resilient against the CO- VID-19 epidemic? The Lancet. 2020; 395(10227):848-50. https://doi.org/10.1016/s0140-6736(20)30551-1. DOI: https://doi.org/10.1016/S0140-6736(20)30551-1

Blumberg S, Borlase A, Prada JM, Solomon AW, Emerson P, Hooper PJ, et al. Implications of the COVID-19 pandemic in eliminating tra- choma as a public health problem. Trans R Soc Trop Med Hyg. 2021; 115(3):222-8. https://doi.org/10.1093/trstmh/traa170. DOI: https://doi.org/10.1101/2020.10.26.20219691

Chang HJ, Huang N, Lee CH, Hsu YJ, Hsieh CJ, Chou, YJ. The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS. American journal of public health. 2004; 94(4);562-4. https://dx.doi.org/10.2105%2Fajph.94.4.562. DOI: https://doi.org/10.2105/AJPH.94.4.562

Carlsson-Szlezak P, Reeves M, Swartz P. What coronavirus could mean for the global economy. Harvard Business Review [Internet]. 2020 [cited 2022 Mar 1]; 3(10). https://bityl.co/CAus.

Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, et al. New-onset diabetes in Covid-19. N Engl J Med. 2020; 383(8):789-90. https://doi.org/10.1056/nejmc2018688. DOI: https://doi.org/10.1056/NEJMc2018688

Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. Journal of Diabetes and its Complications. 2020; 34(9):107637. https://dx.doi.org/10.1016%2Fj.jdiacomp.2020.107637. DOI: https://doi.org/10.1016/j.jdiacomp.2020.107637

Bansal M. Cardiovascular disease and COVID-19. Diabetes & Meta- bolic Syndrome: Clinical Research & Reviews. 2020; 14(3):247-50. https://doi.org/10.1016/j.dsx.2020.03.013. DOI: https://doi.org/10.1016/j.dsx.2020.03.013

Barison A, Aimo A, Castiglione V, Arzilli C, Lupón J, Codina P, et al. Cardiovascular disease and COVID-19: les liaisons dangereuses. Eur J Prev Cardiol. 2020; 27(10):1017-25. https://doi.org/10.1177/2047487320924501. DOI: https://doi.org/10.1177/2047487320924501

Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021; 65:101205. https://doi.org/10.1016/j.arr.2020.101205. DOI: https://doi.org/10.1016/j.arr.2020.101205

Mori H, Obinata H, Murakami W, Tatsuya K, Sasaki H, Miyake Y, et al. Comparison of COVID-19 disease between young and elderly patients: Hidden viral shedding of COVID-19. J Infect and Chemother. 2021; 27(1):70-75. https://doi.org/10.1016/j.jiac.2020.09.003. DOI: https://doi.org/10.1016/j.jiac.2020.09.003

Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020; 80(6):e14-e18. https://doi.org/10.1016/j.jinf.2020.03.005. DOI: https://doi.org/10.1016/j.jinf.2020.03.005

Leffler CT, Ing E, Lykins JD, Hogan MC, McKeown CA, Grzybowski A. Association of country-wide coronavirus mortality with demographics, testing, lockdowns, and public wearing of masks. The American journal of tropical medicine and hygiene. 2020; 103(6):2400-11. https://doi.org/10.4269/ajtmh.20-1015. DOI: https://doi.org/10.4269/ajtmh.20-1015

De Oliveira RP, Achcar JA, Nunes AA. Modeling the incidence and dea- th rates of COVID-19 pandemic in different regions of the world. Epidemiologic Methods. 2020;9(s1). https://doi.org/10.1515/em-2020-0017. DOI: https://doi.org/10.1515/em-2020-0017

Cordeiro GM, Figueiredo D, Silva L, Ortega EM, Prataviera F. Explaining COVID-19 mortality

rates in the first wave in Europe. Model Assist Stat Appl. 2021; 16(3):211-21. https://doi.org/10.3233/MAS-210534. DOI: https://doi.org/10.3233/MAS-210534

Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. Journal of Applied Statistics. 2004; 31:799-815. https://doi.org/10.1080/0266476042000214501. DOI: https://doi.org/10.1080/0266476042000214501

Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods. 2006; 11:54-71. https://doi.org/10.1037/1082-989x.11.1.54. DOI: https://doi.org/10.1037/1082-989X.11.1.54

Branscum AJ, Johnson WO, Thurmond MC. Bayesian beta regres- sion: applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Aust N Z J Stat. 2007; 49(3):287-301. https://doi.org/10.1111/j.1467-842X.2007.00481.x. DOI: https://doi.org/10.1111/j.1467-842X.2007.00481.x

Liu F, Eugenio EC. A review and comparison of Bayesian and likelihood-based inferences in beta regression and zero-or-one-inflated beta regression. Stat Methods Med Res. 2018; 27(4):1024-44. https://doi.org/10.1177/0962280216650699. DOI: https://doi.org/10.1177/0962280216650699

Schafer JL. Multiple imputation: a primer. Statistical methods in medical research. 1999; 8(1):3-15. https://doi.org/10.1177/096228029900800102. DOI: https://doi.org/10.1191/096228099671525676

Hannah R, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, Hasell J, Macdonald B, BeltekianD, and Roser M. Coronavirus Pandemic (COVID-19). Our World in Data [Internet]. 2020[cited 2021 Nov 28]. https://bityl.co/CAvk.

Delignette-Muller ML, Dutang C. Fitdistrplus: An R package for fitting distributions. Journal of statistical software. 2015; 64(4):1-34. https://doi.org/10.18637/jss.v064.i04. DOI: https://doi.org/10.18637/jss.v064.i04

Zeileis A, Cribari-Neto F, Gruen B, Kosmidis I, Simas AB, Rocha AV, Zeileis MA, Package ‘betareg’. R package [Internet]. 2016[cited 2021 Nov 28]; 3(2). https://bityl.co/CAvr.

Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Package ‘corrplot’. Sta- tistician [Internet]. 2017[cited 2021 Nov 28]; 56(316):e24. https://bityl.co/CAvw.

Adekeye O, Olawole-Isaac A, Fasina F, Adekola PO, Samuel GW, Akanbi MA. Nigeria and Italy divergences in coronavirus experience: impact of population density. The Scientific World Journal. 2020. https://doi.org/10.1155/2020/8923036. DOI: https://doi.org/10.1155/2020/8923036

Como Citar

APA

Chellai, F. (2022). Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model. Revista de Salud Pública, 24(2), 1–11. https://doi.org/10.15446/rsap.v24n2.100449

ACM

[1]
Chellai, F. 2022. Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model. Revista de Salud Pública. 24, 2 (mar. 2022), 1–11. DOI:https://doi.org/10.15446/rsap.v24n2.100449.

ACS

(1)
Chellai, F. Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model. Rev. salud pública 2022, 24, 1-11.

ABNT

CHELLAI, F. Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model. Revista de Salud Pública, [S. l.], v. 24, n. 2, p. 1–11, 2022. DOI: 10.15446/rsap.v24n2.100449. Disponível em: https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/100449. Acesso em: 22 jan. 2025.

Chicago

Chellai, Fatih. 2022. “Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model”. Revista De Salud Pública 24 (2):1-11. https://doi.org/10.15446/rsap.v24n2.100449.

Harvard

Chellai, F. (2022) “Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model”, Revista de Salud Pública, 24(2), p. 1–11. doi: 10.15446/rsap.v24n2.100449.

IEEE

[1]
F. Chellai, “Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model”, Rev. salud pública, vol. 24, nº 2, p. 1–11, mar. 2022.

MLA

Chellai, F. “Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model”. Revista de Salud Pública, vol. 24, nº 2, março de 2022, p. 1-11, doi:10.15446/rsap.v24n2.100449.

Turabian

Chellai, Fatih. “Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model”. Revista de Salud Pública 24, no. 2 (março 1, 2022): 1–11. Acessado janeiro 22, 2025. https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/100449.

Vancouver

1.
Chellai F. Determinants of mortality rates from COVID-19: a macro level analysis by extended-beta regression model. Rev. salud pública [Internet]. 1º de março de 2022 [citado 22º de janeiro de 2025];24(2):1-11. Disponível em: https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/100449

Baixar Citação

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Acessos à página de resumo

215

Downloads

Não há dados estatísticos.