Evaluación del desempeño del APACHE II y SAPS III, en una unidad de cuidados intensivos
Performance evaluation of APACHE II and SAPS III in an intensive care unit
DOI:
https://doi.org/10.15446/rsap.v20n3.59952Palavras-chave:
Cuidados críticos, unidad de cuidados intensivos, monitoreo fisiológico (es)Critical care, intensive care units, patient monitoring (en)
Downloads
Objetivo El objetivo principal de este trabajo, fue validar y comparar la capacidad predictiva de mortalidad de los indicadores de gravedad APACHE II (Acute Physiology and Chronic Health Evaluation, Score II) y SAPS III (Simplified Acute Physiology, Score III) en una muestra de pacientes admitidos en la Unidad de Cuidados Intensivos Adulto (UCI) del Hospital de Curicó, entre los años 2011 y 2013.
Materiales y Métodos Estudio analítico, observacional de cohorte histórica de casos consecutivos desde la admisión a la UCI hasta el egreso hospitalario. Para el análisis, se usó el Modelo de Regresión Logística Binaria.De un total de 1 042 pacientes ingresados a la UCI, se incluyó a 793 pacientes sobrevivientes, y a 249 pacientes fallecidos, que representaban el 76,1% y 23,9% respectivamente, del total.
Resultados El SAPS III presenta mejor capacidad predictiva que el APACHE II, según el área bajo la curva de características operativas del receptor 0,81 y 0,80 respectivamente. La sensibilidad para el modelo SAPS III es 0,95 y para APACHE II es 0,93. El índice de especificidad es 0,3 para el SAPS III y 0,4 para el APACHE II, con probabilidad superior a 0,5.
Conclusión Los indicadores de predicción de mortalidad en UCI; APACHE II y SAPS III tienen una buena capacidad predictiva general, pero ambos indicadores presentan una baja especificidad.
Objective The main objective of this work was to validate and compare the predictive capacity of mortality of the severity score systems APACHE II (Acute Physiology and Chronic Health Evaluation, Score II) and SAPS III (Simplified Acute Physiology, Score III) in a sample of patients admitted to the Adult Intensive Care Unit (ICU) of the Hospital de Curicó between 2011 and 2013.
Materials and Methods Analytical, observational, retrospective cohort study of consecutive cases since admission to the ICU until hospital discharge. A binary logistic regression model was used for the analysis. Out of 1 042 patients admitted to the ICU, 793 surviving patients and 249 deceased patients were included, representing 76.1% and 23.9%, respectively, of the total sample.
Results The SAPS III score has a better predictive capacity than the APACHE II, according to the area under the curve and the receiver operating characteristic curve: 0.81 and 0.80, respectively. Sensitivity for the SAPS III model was 0.95 and for APACHE II was 0.93. The specificity index was 0.3 for SAPS III and 0.4 for APACHE II, with a probability above 0.5.
Conclusion APACHE II and SAPS III, as ICU mortality prediction indicators, have a good predictive power but low specificity.
Referências
Abdel P, Amaury Ch, Armando P, Teddy T, Rosa J. Evaluación del pronóstico de mortalidad por los índices de gravedad APACHE II y IV. Revista Cubana de Medicina Intensiva y Emergencia. 2013; 12 (1): 2334 -57.
Sakallaris B, Jastremski C, Von Rueden K. Clinical decision support systems for outcome measurement and management. Critical Care. 2000; 11(3):351-62.
Steyerberg EW. Clinical Prediction Models. A Practical Approach to Development, Validation, and Updating. 2009. Disponible en: http://www.springer.com/us/book/9780387772431#reviews. Consultado en marzo 2016.
Knaus W, Zimmerman J, Wagner D, Draper E, Lawrence D. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981; 9 (8):591-7.
Knaus W, Draper E, Wagner D, Zimmerman J. APACHE II: a severity of disease classification system. Crit Care Med. 1985; 13(10):818-29.
Wagner D, Draper E, Knaus W. APACHE III study design: analytic plan for evaluation of severity and outcome in intensive care unit patients. Development of APACHE III. Crit Care Med. 1989; 17(12 Pt 2): S199-203.
Zimmerman J, Kramer A, McNair D, Malila F. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med. 2006; 34(5):1297-310.
Le Gall J, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, Mercier P, Thomas R, Villers D. A simplified acute physiology score for ICU patients. Crit Care Med. 1984; 12(11):975-7.
Le Gall J, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993 22-29; 270(24):2957-63. Erratum in: JAMA 1994 4; 271(17):1321.
Rui P, Moreno P, Metnitz E, Almeida B, Jordan P, Bauer R, Abizanda C, Gaetano I, David E, Maurizia C, Le Gall J. on behalf of the SAPS 3 Investigators SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Medicine. 2005; 31, (10):1345-55.
Dougnac A, Andresen H, Rabagliati B, Landerretche S, Francois P, Villarroel L, Prado J. Mortalidad en Unidades de Tratamientos Intensivos: Valor predictive de puntaje de gravedad APACHE II versus APACHE Máximo. Rev. Méd. Chile. 1993; 121:52-58.
Collett D. Modelling Binary Data. Chapman and Hall. London; 1991.
Lemeshow S., Hosmer DW. A review of goodness of fit statistics for use in the development of logistic regression models. American Journal of Epidemiology. 115:92–106, 1982.
Nelson G, Juan Manuel T, Carlos C, Felipe Z, Fabián J. Desempeño del APACHE II y el SAPS 3. Adaptación regional en una población de pacientes críticos de Colombia. Acta Med Colomb. 2014; 39 (2):148- 158.
Hanley J, McNeil B. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve1. Diagnostic Radiology. 1982; 143 (1): 29 -36.
Silva J, Malbouisson L, Nuevo H, Barbosa L, Marubayashi L, Teixeira I, Nassar A, Carvalho C, Ferreira S, Costa J, Rezende E. Aplicabilidade do Escore Fisiológico Agudo Simplificado (SAPS 3) em Hospitais Brasileiros.Revista brasileira de anestesiología. 2010; 60(1): 20-31.
Nassar A, Mocelin A, Nunes A, Giannini F, Brauer L, Andrade F, Poianas F, Brauer L, Moreira F, Augusto C. Caution when using prognostic models: A prospective comparison of 3 recent prognostic models. J Crit Care. 2011; 27(4):1-7.
Hannah L, Yoon-Jung S, Hyerim K, Hyesun P, Hee-Pyoung P. Validation of the APACHE IV model and its comparison with the APACHE II, SAPS 3, and Korean SAPS 3 models for the prediction of hospital mortality in a Korean surgical intensive care unit. Korean Journal of Anesthesiology. 2014; 67(2):115-22.
Mbongo C, Monedero P, Guillen-Grima F, Yepes M, Vives M, Echarri G. Performance of SAPS3, compared with APACHE II and SOFA, to predict hospital mortality in a general ICU in Southern Europe. Eur J Anaesthesiol 2009; 26(11):940-5.
Eldho P, Bailey M, Pilcher D. Risk prediction of hospital mortality for adult patients admitted to Australian and New Zealand intensive care units: Development and validation of the Australian and New Zealand Risk of Death model. Journal of Critical Care. 2013; 28 (6): 935-941.
Schneider A, Lipcsey M, Bailey M, Pilcher D, Bellomo R. Simple translational equations to compare illness severity scores in intensive care trials. Journal of Critical Care. 2013; 28(5): 885.e1–885.
Como Citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Baixar Citação
CrossRef Cited-by
1. Xiaoyu Zheng, Tianyang Hu, Tingrong Liu, Wei Wang. (2022). Simplified acute physiology score III is excellent for predicting in-hospital mortality in coronary care unit patients with acute myocardial infarction: A retrospective study. Frontiers in Cardiovascular Medicine, 9 https://doi.org/10.3389/fcvm.2022.989561.
2. Diogo Oliveira Toledo, João Manoel Silva Junior, Jerusa Márcia Toloi, Thaisa de Assis, Luciana Martins Serra, Paula Glaucieli do Carmo, Flavia Julie do Amaral Pfeilsticker, Dyaiane Marques dos Santos, Branca Jardini de Freitas, Amanda M.R. de Oliveira, Daren K. Heyland. (2020). NUTRIC-S proposal: Using SAPS 3 for mortality prediction in nutritional risk ICU patients. Clinical Nutrition Experimental, 31, p.19. https://doi.org/10.1016/j.yclnex.2019.12.003.
3. Jorge Luis Herrera Herrera, Edinson Oyola Lopez, Yolima Judith Llorente Pérez. (2020). Delirium in patients of the Intensive Care Unit of a health institution in Monteria, Colombia. Revista Científica de la Sociedad de Enfermería Neurológica (English ed.), 51, p.7. https://doi.org/10.1016/j.sedeng.2019.04.004.
4. Jorge Luis Herrera Herrera, Edinson Oyola López, Yolima Judith Llorente Pérez. (2020). Delirium en pacientes de la Unidad de Cuidados Intensivos de una institución de salud en Montería, Colombia. Revista Científica de la Sociedad Española de Enfermería Neurológica, 51, p.7. https://doi.org/10.1016/j.sedene.2019.04.003.
5. Liangwen Cui, Yutao Zha, Cheng Zhang, Hui Zhang, Chao Yu, Huang Rui, Min Shao, Nian Liu. (2023). Exploration of a nomogram prediction model of 30-day survival in adult ECMO patients. Frontiers in Medicine, 10 https://doi.org/10.3389/fmed.2023.1062918.
Dimensions
PlumX
Acessos à página de resumo
Downloads
Licença
Copyright (c) 2018 Revista de Salud Pública
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista provee acceso libre inmediato a su contenido bajo el principio de que hacer disponible gratuitamente investigación al publico apoya a un mayor intercambio de conocimiento global.
Todos los contenidos de esta revista, excepto dónde está identificado, están publicados bajo una Licencia Creative Commons Atribución 4.0.