Publicado

2018-05-01

Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes

Cardiometabolic index as a predictor of cardiovascular risk factors in adolescents

DOI:

https://doi.org/10.15446/rsap.v20n3.61259

Palavras-chave:

Adolescente, dislipidemias, hipertensión (es)
Adolescent, dyslipidemia, hypertension (en)

Autores

  • Edgar José Acosta García Universidad de Carabobo
  • María Concepción Paez Universidad de Carabobo

Objetivo Evaluar la capacidad del Índice Cardiometabólico (ICM) para predecir alteraciones en las concentraciones en ayuno de glucosa, dislipidemia e hipertensión en adolescentes.
Métodos El estudio fue descriptivo, correlacional y transversal. Se evaluaron 278 adolescentes de entre 12 y 15 años. Se determinó las concentraciones de glicemia, triglicéridos, HDL-c y se calculó el índice TG/HDL-c. Se midió el peso, talla y circunferencia de cintura y se determinó el Índice de Masa Corporal, el de conicidad y la relación cintura talla (Rel. CC-T). El producto de la Rel. CC-T y TG/HDL-c constituyó el índice cardiometabólico (ICM). Se determinó la presión arterial.
Resultados El área bajo la curva ROC del ICM como predictor de dislipidemia, hipertensión (HTA) y glucosa alterada en ayunas (GAA) fue de 0,777 (IC 95%=0,712-0,842), 0,710 (IC 95%=0,559-0,853) y 0,564 (IC 95%=0,447-0,682), respectivamente.
Conclusión En la muestra estudiada el ICM mostró capacidad de predecir dislipidemia e HTA, pero no para GAA.

Objective To evaluate the ability of the Cardiometabolic Index (CMI) to predict alterations in fasting glucose concentrations, dyslipidemia and hypertension in adolescents.
Materials and Methods Descriptive, correlational and cross-sectional study. 278 adolescents aged between 12 and 15 years were evaluated. Serum glucose, triglycerides and HDL-C were determined and the TG/HD-C ratio was estimated. Weight, height and waist circumference were measured and body mass index, conicity index and waist-to-height ratio (WHtR) were determined. The product of WHtR and TG/HDL-C was the Cardiometabolic Index (CMI). Blood pressure was determined.
Results The area under the ROC curve of the CMI as a predictor of dyslipidemia, hypertension (AHT) and impaired fasting glucose (IFG) was 0.777 (CI 95% = 0.712 to 0.842), 0.710 (CI 95% = 0.559 to 0.853) and 0.564 (CI 95% = 0.447 to 0.682), respectively.
Conclusion In the studied sample, CMI showed ability to predict dyslipidemia and hypertension, but not IFG.

Referências

Organización Mundial de la Salud. El método progresivo de la OMS/OPS: Vigilancia de los factores de riesgo para las enfermedades no transmisibles. Ginebra: OMS; 2001.

Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988; 37: 1595-607.

DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991; 14:173-94.

Martinez-Vila E, Irimia P. Factores de riesgo del ictus. An Sis San Navarra. 2000; 23 (3):25-31.

Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5:150-9.

Dunn FL. Management of dyslipidemia in people with type 2 diabetes mellitus. Rev Endocr Metab Disord. 2010;11:41–51.

Gaziano JM, Hennekens CH, O'Donnell CJ, Breslow JL, Buring JE. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation. 1997;96: 2520–5.

Jeppesen J,HeinHO,Suadicani P, GyntelbergF. Relationof highTG-lowHDL colesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol. 1997; 17:1114-20.

Kahn HS. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005; 5:26.

Kahn HS. The lipid accumulation product is better than BMI for identifying diabetes: a population-based comparison. Diabetes Care. 2006;29:151–3.

Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-toheight ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0•5 could be a suitable global boundary value. Nutr Res Rev. 2010; 23:247-269

Wakabayashi I, Daimon T. The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin Chim Acta. 438 (2015): 274-8.

Declaración de Helsinki de la Asociación Médica Mundial. Principios éticos para las investigaciones médicas en seres vivos. Asamblea Medica Mundial; Fortaleza, Brasil; 2013.

Bosch V, Layrisse M, Arends T, Bianco N, Echeverria G, Hernandez B. Bioquimica general. En: Estudio Nacional de Crecimiento y Desarrollo Humano de la República de Venezuela. H. Mendez Castellano (Ed). Tomo III. Fundacredesa. Caracas. 1226-91; 1996.

Maulino N, Macias de Tomei C, Garcia de Blanco M, Malagola I, Mejias A, Machado de Ponte L, et al. Consenso sobre sindrome metabolico en ninos y adolescentes. Arch Venez Puer Ped. 2009; 72(2):73-7.

Biosystems. Reagents & Instruments. Manual del Usuario. Barcelona, España; 2010.

World Health Organization. Technical Report Series No 854. Physical Status: The use and interpretation of anthropometry. Geneva; 1995.

Lohman TG, Roche AF and Martorell R (eds). Anthropometric standarization reference manual. Champaign, IL: Human Kinetics; 1988.

Valdez R. A simple model-based index of abdominal adiposity. J Clin Epidemiol. 1991; 119:71-80.

Ramzan M, Ali I, Ramzan F, Ramzan F, Ramzan MH. Waist circumference and lipid profile among primary school children. JPMI. 2011; 25(3): 222-6.

Molero-Conejo E, Morales LM, Fernandez V, Raleigh X, Casanova A, Connell L, et al. Insulina, leptina y hormona de crecimiento y su relacion con indice de masa corporal e indice de obesidad en adolescentes. Arch Latinoam Nutr. 2006; 56(1):29-35.

Carias D, Cioccia AM, Gutierrez M, Hevia P, Perez A. Indicadores bioquimicos del estado nutricional de adolescentes pre-universitarios de Caracas. An Venez Nutr. 2009; 22(1):12-9.

HSIEH SD, MUTO T. The superiority of waist-to-height ratio as an anthropometric index to evaluate clustering of coronary risk factors among non-obese men and women. Prev Med. 2005; 40:216-20.

Koch E, Díaz C, Romero T, Kirchbaum A, Manriquez L, Paredes M, et al. Razón cintura-estatura como un predictor de mortalidad en población chilena: un estudio de 8 años de seguimiento en la cohorte del proyecto San Francisco. Rev Chil Cardiol. 2007; 26:415-428.

Hsieh SD, Yoshinaga H, Muto T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk en Japanese men and women. Int J Obes Relat Metab Disord. 2003; 27:610-16.

Koch E, Romero T, Manríquez L, Taylor A, Román C, Paredes M, et al. Razón cintura-estatura: Un mejor predictor antropométrico de riesgo cardiovascular y mortalidad en adultos chilenos. Nomograma diagnóstico utilizado en el Proyecto San Francisco. Rev Chil Cardiol. 2008; 27 (1):23-35.

Frayn KN. Adipose tissue and the insulin resistence syndrome. Proc Nutr Soc. 2001; 60:375-80.

Acosta Garcia E. Vigencia del sindrome metabolico. Acta Bioquim Clin Latinoam. 2011; 45 (3):423-30.

Coniglio RI, Nellem J, Sibechi N, Colombo O. Sindrome metabolico: frecuencia de sus componentes y riesgo global de cardiopatia coronaria. Acta Bioquim Clin Latinoam. 2011; 45(3):413-21.

Li C, Ford E, Meng Y, Mokdad A, Reaven G. Does the association of the triglyceride to high-density lipoprotein cholesterol ratio with fasting insulin differ by race/ethnicity? Cardiovasc Diabetol. 2008; 7:4.

Hayat S, Ahmad F, Ijaz A, Sattar A Dilawar M y Hashin R. Spectrum of lipid and lipoprotein Indices in human subjects with insulin resistance syndrome. J Ayub Med Coll Abbottabad. 2008; 20:17-21.

Como Citar

APA

Acosta García, E. J. e Paez, M. C. (2018). Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes. Revista de Salud Pública, 20(3), 340–345. https://doi.org/10.15446/rsap.v20n3.61259

ACM

[1]
Acosta García, E.J. e Paez, M.C. 2018. Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes. Revista de Salud Pública. 20, 3 (maio 2018), 340–345. DOI:https://doi.org/10.15446/rsap.v20n3.61259.

ACS

(1)
Acosta García, E. J.; Paez, M. C. Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes. Rev. salud pública 2018, 20, 340-345.

ABNT

ACOSTA GARCÍA, E. J.; PAEZ, M. C. Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes. Revista de Salud Pública, [S. l.], v. 20, n. 3, p. 340–345, 2018. DOI: 10.15446/rsap.v20n3.61259. Disponível em: https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/61259. Acesso em: 22 jan. 2025.

Chicago

Acosta García, Edgar José, e María Concepción Paez. 2018. “Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes”. Revista De Salud Pública 20 (3):340-45. https://doi.org/10.15446/rsap.v20n3.61259.

Harvard

Acosta García, E. J. e Paez, M. C. (2018) “Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes”, Revista de Salud Pública, 20(3), p. 340–345. doi: 10.15446/rsap.v20n3.61259.

IEEE

[1]
E. J. Acosta García e M. C. Paez, “Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes”, Rev. salud pública, vol. 20, nº 3, p. 340–345, maio 2018.

MLA

Acosta García, E. J., e M. C. Paez. “Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes”. Revista de Salud Pública, vol. 20, nº 3, maio de 2018, p. 340-5, doi:10.15446/rsap.v20n3.61259.

Turabian

Acosta García, Edgar José, e María Concepción Paez. “Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes”. Revista de Salud Pública 20, no. 3 (maio 1, 2018): 340–345. Acessado janeiro 22, 2025. https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/61259.

Vancouver

1.
Acosta García EJ, Paez MC. Índice cardiometabólico como predictor de factores de riesgo cardiovascular en adolescentes. Rev. salud pública [Internet]. 1º de maio de 2018 [citado 22º de janeiro de 2025];20(3):340-5. Disponível em: https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/61259

Baixar Citação

CrossRef Cited-by

CrossRef citations13

1. Ma. De La Cruz Ruiz-Jaramillo, Mauricio López-Acevedo. (2021). Triglycerides/high-density lipoprotein-cholesterol ratio in children with metabolic syndrome. Child and Adolescent Obesity, 4(1), p.78. https://doi.org/10.1080/2574254X.2021.1903297.

2. Igor Cigarroa, Michelle Bravo-Leal, Fanny Petermann-Rocha, Solange Parra-Soto, Yeny Concha-Cisternas, Carlos Matus-Castillo, Jaime Vásquez-Gómez, Rafael Zapata-Lamana, María Antonia Parra-Rizo, Cristian Álvarez, Carlos Celis-Morales. (2023). Brisk Walking Pace Is Associated with Better Cardiometabolic Health in Adults: Findings from the Chilean National Health Survey 2016–2017. International Journal of Environmental Research and Public Health, 20(8), p.5490. https://doi.org/10.3390/ijerph20085490.

3. Lulu Cheng, Qinggang Wu, Siyu Wang. (2024). Cardiometabolic index is associated with increased depression: A population-based study. Journal of Affective Disorders, 348, p.259. https://doi.org/10.1016/j.jad.2023.12.073.

4. Yiwen Qiu, Qian Yi, Shuting Li, Weidi Sun, Ziyang Ren, Yaojia Shen, Yuhang Wu, Zhicheng Wang, Wei Xia, Peige Song. (2022). Transition of cardiometabolic status and the risk of type 2 diabetes mellitus among middle‐aged and older Chinese: A national cohort study. Journal of Diabetes Investigation, 13(8), p.1426. https://doi.org/10.1111/jdi.13805.

5. Xujin Wu, Xixin Jin, Wei Xu, Chang She, Liubing Li, Yongtao Mao. (2024). Cardiometabolic index is associated with increased bone mineral density: a population-based cross-sectional study. Frontiers in Public Health, 12 https://doi.org/10.3389/fpubh.2024.1403450.

6. Bertha Campos-López, Mónica R. Meza-Meza, Isela Parra-Rojas, Adolfo I. Ruiz-Ballesteros, Barbara Vizmanos-Lamotte, José Francisco Muñoz-Valle, Margarita Montoya-Buelna, Sergio Cerpa-Cruz, Luis E. Bernal-Hernández, Ulises De la Cruz-Mosso. (2021). Association of cardiometabolic risk status with clinical activity and damage in systemic lupus erythematosus patients: A cross-sectional study. Clinical Immunology, 222, p.108637. https://doi.org/10.1016/j.clim.2020.108637.

7. Mauricio Megchún Hernández, Judith Espinosa Raya, Esmeralda García Parra, Raquel Gómez Pliego, Manuela Castellanos Pérez, Alfredo Briones Aranda. (2022). Comparative analysis of anthropometric indicators for diagnosing obesity and predicting cardiometabolic risk in Mexican adolescents. Nutrición Hospitalaria, https://doi.org/10.20960/nh.03897.

8. Xuanchun Huang, Lanshuo Hu, Shiyi Tao, Tiantian Xue, Jun Li, Xuejiao Wang, Amir Hossein Behnoush. (2024). Association between cardiometabolic index and testosterone levels in adult men: NHANES 2011–2016. PLOS ONE, 19(8), p.e0306401. https://doi.org/10.1371/journal.pone.0306401.

9. Jing Xu, Yue-Chun Li. (2024). Negative correlation between cardiometabolic index and testosterone in male adults. Frontiers in Endocrinology, 15 https://doi.org/10.3389/fendo.2024.1447230.

10. Huifang Cheng, Xiaoli He, Xiaoke Jin. (2024). The relationship between cardiometabolic index and infertility in American adults: a population-based study. Frontiers in Endocrinology, 15 https://doi.org/10.3389/fendo.2024.1424033.

11. Fubing Zha, Changchun Cao, Mengru Hong, Huili Hou, Qionghua Zhang, Bin Tang, Haofei Hu, Yong Han, Yibing Zan, Yulong Wang, Jianwen Xu. (2023). The nonlinear correlation between the cardiometabolic index and the risk of diabetes: A retrospective Japanese cohort study. Frontiers in Endocrinology, 14 https://doi.org/10.3389/fendo.2023.1120277.

12. Camila González Hernández, Sebastián Astorga Verdugo. (2024). Efecto de un entrenamiento interválico con cuerda en estudiantes de 7° y 8° básico de la ciudad de Talca. Revista Chilena de Rehabilitación y Actividad Física, , p.1. https://doi.org/10.32457/reaf2.2365.

13. Jimei Song, Yimei Li, Junxia Zhu, Jian Liang, Shan Xue, Zhangzhi Zhu. (2024). Non-linear associations of cardiometabolic index with insulin resistance, impaired fasting glucose, and type 2 diabetes among US adults: a cross-sectional study. Frontiers in Endocrinology, 15 https://doi.org/10.3389/fendo.2024.1341828.

Dimensions

PlumX

Acessos à página de resumo

525

Downloads

Não há dados estatísticos.