HClO4 BONDING CHARACTERISTICS AGAINST FORMAL CHARGE PREDICTION AND HYPERVALENCE CONCEPT. SHOULD THESE CONCEPTS BE TAUGHT?
CARACTERÍSTICAS DEL ENLACE EN LA MOLÉCULA HClO4 FRENTE A LA PREDICCIÓN POR CARGA FORMAL Y EL CONCEPTO DE HIPERVALENCIA ¿SE DEBEN ENSEÑAR ESTOS CONCEPTOS?
DOI:
https://doi.org/10.15446/rev.fac.cienc.v13n1.108223Palabras clave:
Contents update, hybridization, formal charge, hypervalence concept (en)Actualización de contenidos, carga formal, estructura de Lewis, hibridación, hipervalencia (es)
Descargas
Chemical bonding is a central topic in general chemistry courses. Lewis (1916) published a fundamental paper where he proposed a model based on localized electron pairs and as a consequence, gave rise to the octet rule. However, the discovery of xenon fluorides and compounds such as SF6 gave rise to the concept of “hypervalence” involving d orbitals in hybridization schemes. Currently, it has been demonstrated that d orbitals have a negligible participation in the bonds of such molecules and, in some cases octet rule is not violated.
This article proposes a discussion about the concepts we use in introductory chemistry lectures. Some models are useful and valuable from a pedagogical point of view, nevertheless, others are unnecessary and far from reality causing misconceptions and lack of interest, since it is hard to rationalize inconsistencies found.
HClO4 molecule was selected to demonstrate that hypervalence concept, molecular structure selection based on formal charge rules and participation of d orbitals on bonds are not appropriate approximations. Bond orders and atomic charges determined through Natural Bond Orbital calculations indicate bonds between Cl and O atoms are mainly simple with a high ionic character.
El enlace químico es un tema central en cursos de química general. Lewis (1916) publicó un trabajo fundamental donde plantea un modelo a partir de pares de electrones localizados y da origen a la regla del octeto. Sin embargo, el descubrimiento de fluoruros de xenón y compuestos como SF6 dieron lugar al concepto “hipervalencia” involucrando orbitales d en la hibridación. Actualmente, se ha demostrado que los orbitales d tienen una participación despreciable en los enlaces de dichas moléculas y en algunos casos, no exceden la regla del octeto. Este artículo plantea una discusión sobre los conceptos que usamos en cursos de química general. Algunos modelos son útiles y valiosos desde un punto de vista pedagógico, otros son alejados de la realidad generando conceptos erróneos y falta de interés, ya que es difícil racionalizar las inconsistencias encontradas. La molécula HClO4 se seleccionó para demostrar que el concepto de hipervalencia, la selección de la estructura molecular basada en reglas de carga formal y la participación de orbitales d en los enlaces no son aproximaciones adecuadas. Los órdenes de enlace y cargas atómicas determinadas a través de cálculos “Natural Bond Orbital” indican que los enlaces Cl-O son principalmente sencillos con un alto carácter iónico.
Referencias
Bendazzoli, G. L., Bernardi, F., Palmieri, P., & Zauli, C. (1968). The valence state of sulphur in sulphoxides: the role of 3d-orbitals. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2186. https://doi.org/10.1039/j19680002186 DOI: https://doi.org/10.1039/j19680002186
Boese, A. D., & Martin, J. M. L. (2006). Anharmonic force fields of perchloric acid, HClO4, and perchloric anhydride, Cl2O7. An extreme case of inner polarization. Journal of Molecular Structure, 780–781, 310–316. https://doi.org/10.1016/j.molstruc.2005.07.009 DOI: https://doi.org/10.1016/j.molstruc.2005.07.009
Brown, R., & Peel, J. (1968). VESCF-MO studies of molecules containing atoms from the second row of the Periodic Table. II. Properties of the fluorides of silicon, phosphorus, sulphur, and chlorine for a minimal basis set excluding 3d-orbitals. Australian Journal of Chemistry, 21(11), 2605. https://doi.org/10.1071/CH9682605 DOI: https://doi.org/10.1071/CH9682605
Brown, T., Lemay Jr., E., Murphy, C., Bursten, B., & Woodward, P. (2014). Química, la Ciencia Central (12th ed.). Pearson Education.
Casper, B., Mack, H.-G., Mueller, H. S. P., Willner, H., & Oberhammer, H. (1994). Molecular Structures of Perchloric Acid and Halogen Perchlorates ClOClO3 and FOClO3. The Journal of Physical Chemistry, 98(34), 8339–8342. https://doi.org/10.1021/j100085a013 DOI: https://doi.org/10.1021/j100085a013
Chang, R., & Goldsby, K. (2020). Química (13th ed.). McGraw Hill Education.
Cioslowski, J., & Surján, P. R. (1992). An observable-based interpretation of electronic wavefunctions: application to “hypervalent” molecules. Journal of Molecular Structure: THEOCHEM, 255, 9–33. https://doi.org/10.1016/0166-1280(92)85003-4 DOI: https://doi.org/10.1016/0166-1280(92)85003-4
Cooper, D. L., Cunningham, T. P., Gerratt, J., Karadakov, P. B., & Raimondi, M. (1994). Chemical Bonding to Hypercoordinate Second-Row Atoms: d Orbital Participation versus Democracy. Journal of the American Chemical Society, 116(10), 4414–4426. https://doi.org/10.1021/ja00089a033 DOI: https://doi.org/10.1021/ja00089a033
Dobado, J. A., Martínez-García, H., Molina, & Sundberg, M. R. (1998). Chemical Bonding in Hypervalent Molecules Revised. Application of the Atoms in Molecules Theory to Y 3 X and Y 3 XZ (Y = H or CH 3 ; X = N, P or As; Z = O or S) Compounds. Journal of the American Chemical Society, 120(33), 8461–8471. https://doi.org/10.1021/ja980141p DOI: https://doi.org/10.1021/ja980141p
Durrant, M. C. (2015). A quantitative definition of hypervalency. Chemical Science, 6(11), 6614–6623. https://doi.org/10.1039/C5SC02076J DOI: https://doi.org/10.1039/C5SC02076J
Gillespie, R. J., & Robinson, E. A. (1995). Hypervalence and the Octet Rule. Inorganic Chemistry, 34(4), 978–979. https://doi.org/10.1021/ic00108a032 DOI: https://doi.org/10.1021/ic00108a032
Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., Karafiloglou, P., Landis, C. R., & Weinhold, F. (2018). NBO 7.0.10. Theoretical Chemistry Institute, University of Wisconsin.
Harcourt, R. D. (1968). Increased-valence theory of valence. Journal of Chemical Education, 45(12), 779. https://doi.org/10.1021/ed045p779 DOI: https://doi.org/10.1021/ed045p779
iChemLabs. (2023, April 4). ChemDoodle. 2018.
Kalemos, A., & Mavridis, A. (2009). Bonding Elucidation of the Three Common Acids H 2 SO 4 , HNO 3 , and HClO 4. The Journal of Physical Chemistry A, 113(50), 13972–13975. https://doi.org/10.1021/jp906294d DOI: https://doi.org/10.1021/jp906294d
Karelin, A. I. (1997). Comment on “ Ab Initio Characterization of HOClO 3 and HO 4 Cl: Implications for Atmospheric Chemistry.” The Journal of Physical Chemistry A, 101(13), 2518–2518. https://doi.org/10.1021/jp960819s DOI: https://doi.org/10.1021/jp960819s
Kutzelnigg, W. (1984). Chemical Bonding in Higher Main Group Elements. Angewandte Chemie International Edition in English, 23(4), 272–295. https://doi.org/10.1002/anie.198402721 DOI: https://doi.org/10.1002/anie.198402721
Lewis, G. N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38(4), 762–785. https://doi.org/10.1021/ja02261a002 DOI: https://doi.org/10.1021/ja02261a002
Magnusson, E. (1990). Hypercoordinate molecules of second-row elements: d functions or d orbitals? Journal of the American Chemical Society, 112(22), 7940–7951. https://doi.org/10.1021/ja00178a014 DOI: https://doi.org/10.1021/ja00178a014
Martin, F., & Zipse, H. (2005). Charge distribution in the water molecule-A comparison of methods. Journal of Computational Chemistry, 26(1), 97–105. https://doi.org/10.1002/jcc.20157 DOI: https://doi.org/10.1002/jcc.20157
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, & V. Barone. (2019). Gaussian 16, Revision C.01. Gaussian, Inc.
Musher, J. I. (1969). The Chemistry of Hypervalent Molecules. Angewandte Chemie International Edition in English, 8(1), 54–68. https://doi.org/10.1002/anie.196900541 DOI: https://doi.org/10.1002/anie.196900541
Norman, N. C., & Pringle, P. G. (2022). Hypervalence: A Useful Concept or One That Should Be Gracefully Retired? Chemistry, 4(4), 1226–1249. https://doi.org/10.3390/chemistry4040082 DOI: https://doi.org/10.3390/chemistry4040082
Noury, S., Silvi, B., & Gillespie, R. J. (2002). Chemical Bonding in Hypervalent Molecules: Is the Octet Rule Relevant? Inorganic Chemistry, 41(8), 2164–2172. https://doi.org/10.1021/ic011003v DOI: https://doi.org/10.1021/ic011003v
Oh, J. J., Drouin, B. J., & Cohen, E. A. (2005). The torsion–rotation spectrum of perchloric acid, HClO4. Journal of Molecular Spectroscopy, 234(1), 10–24. https://doi.org/10.1016/j.jms.2005.07.012 DOI: https://doi.org/10.1016/j.jms.2005.07.012
Parkin, G. (2006). Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts. Journal of Chemical Education, 83(5), 791. https://doi.org/10.1021/ed083p791 DOI: https://doi.org/10.1021/ed083p791
Pauling, Linus. (1931). The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. Journal of the American Chemical Society, 53(4), 1367–1400. https://doi.org/10.1021/ja01355a027 DOI: https://doi.org/10.1021/ja01355a027
Pitzer, K. S. (1963). Bonding in Xenon Fluorides and Halogen Fluorides. Science, 139(3553), 414–415. https://doi.org/10.1126/science.139.3553.414 DOI: https://doi.org/10.1126/science.139.3553.414
Ponec, R., & Gironés, X. (2002). Chemical Structures from the Analysis of Domain-Averaged Fermi Holes. Hypervalence and the Nature of Bonding in Isocoordinated Molecules SF 6 and CLi 6. The Journal of Physical
Chemistry A, 106(41), 9506–9511. https://doi.org/10.1021/jp026188l DOI: https://doi.org/10.1021/jp026188l
Reed, A. E., & Schleyer, P. v. R. (1990). Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation. Journal of the American Chemical Society, 112(4), 1434–1445. https://doi.org/10.1021/ja00160a022 DOI: https://doi.org/10.1021/ja00160a022
Reed, A. E., & Weinhold, Frank. (1986). On the role of d orbitals in sulfur hexafluoride. Journal of the American Chemical Society, 108(13), 3586–3593. https://doi.org/10.1021/ja00273a006 DOI: https://doi.org/10.1021/ja00273a006
Rundle, R. E. (1947). Electron Deficient Compounds 1. Journal of the American Chemical Society, 69(6), 1327–1331. https://doi.org/10.1021/ja01198a028 DOI: https://doi.org/10.1021/ja01198a028
See, R. F. (2009). Which Method of Assigning Bond Orders in Lewis Structures Best Reflects Experimental Data? An Analysis of the Octet Rule and Formal Charge Systems for Period 2 and 3 Nonmetallic Compounds. Journal of
Chemical Education, 86(10), 1241. https://doi.org/10.1021/ed086p1241 DOI: https://doi.org/10.1021/ed086p1241
Woon, D. E., & Dunning, T. H. (2009). Theory of Hypervalency: Recoupled Pair Bonding in SF n ( n = 1−6). The Journal of Physical Chemistry A, 113(27), 7915–7926. https://doi.org/10.1021/jp901949b DOI: https://doi.org/10.1021/jp901949b
Woon, D. E., & Dunning, T. H. (2010). Recoupled Pair Bonding in PF n ( n = 1−5) . The Journal of Physical Chemistry A, 114(33), 8845–8851. https://doi.org/10.1021/jp102236a DOI: https://doi.org/10.1021/jp102236a
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista de la Facultad de Ciencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR