REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES
EVALUACIÓN DE LAS LÁMINAS DE NANÓXIDO DE GRAFENO REDUCIDO DERIVADAS DE LOS FRUTOS DE RHUS CORIARIA (L).DE IRAK POR SUS PROPIEDADES ANTICANCERÍGENAS Y ANTIBACTERIANAS
DOI:
https://doi.org/10.15446/rev.fac.cienc.v13n1.110790Palabras clave:
Iraqi Rhus coriaria (L.), MCF-7 breast cancer, mechanism of bioreduction rGO, reduced graphene oxide (rGO). (en)Descargas
In this study, reduced graphene oxide nanosheets (rGO) were biosynthesized using the methanolic extract of Iraqi Rhus coriaria (L.) fruits with substantial bioreduction capabilities. The GC-MS analysis of the methanolic extract of Iraqi Rhus coriaria (L.) fruits was used to determine the synthesis mechanism of rGO nanosheets. The synthesized graphene oxide (GO) and the biosynthesized methanolic extract of Iraqi Rhus coriaria (L.) fruits-rGO nanosheets (MERCF-rGO) were characterized using UV-Vis at 226 nm, and 238 nm, respectively. FTIR explained the functional groups of GO and MERCF-rGO nanosheets, XRD spectra of the GO and MERCF-rGO show the sizes at 10.42 nm, and 4.07 nm, TEM observed the size of GO and MERCF-rGO at 15.54 nm and 9.6 nm. As well as FESEM of GO and MERCF-rGO was carried out to explain sheet shape about them. Raman spectroscopy of GO and MERCF-rGO displayed the two peaks D at (1353 cm-1, 1336 cm-1) and G at (1597 cm-1, 1594 cm-1) respectively. MERCF-rGO nanosheets showed activity against antibacterial gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli), cytotoxicity by MTT assay against breast cancer MCF-7 cell line IC50 at 251.99 μg/mL, genotoxicity fragmented DNA of MCF-7 by comet assay. Comprehensively, the green synthesis of rGO is safe, the lowest cost and developable biogenic nano-formulation of Iraqi Rhus coriaria (L.)–rGO owns antibacterial and anticancer therapeutic applications.
En este estudio, se biosintetizaron nanohojas de óxido de grafeno reducido (rGO) utilizando el extracto metanólico de frutos iraquíes de Rhus coriaria (L.) con importantes capacidades de biorreducción. El análisis GC-MS del extracto metanólico de los frutos iraquíes de Rhus coriaria (L.) se utilizó para determinar el mecanismo de síntesis de las nanohojas de rGO. El óxido de grafeno sintetizado (GO) y el extracto metanólico biosintetizado de nanohojas de frutos-rGO de Rhus coriaria (L.) iraquí (MERCF-rGO) se caracterizaron utilizando UV-Vis a 226 nm y 238 nm, respectivamente. FTIR explicó los grupos funcionales de las nanohojas GO y MERCF-rGO, los espectros XRD de GO y MERCF-rGO muestran los tamaños a 10,42 nm y 4,07 nm, TEM observó el tamaño de GO y MERCF-rGO a 15,54 nm y 9,6 nm. Además, se llevó a cabo FESEM de GO y MERCF-rGO para explicar la forma de las hojas. La espectroscopia Raman de GO y MERCF-rGO mostró los dos picos D en (1353 cm-1, 1336 cm-1) y G en (1597 cm-1, 1594 cm-1) respectivamente. Las nanohojas MERCF-rGO mostraron actividad contra antibacterianos grampositivos (Staphylococcus aureus) y gramnegativos (Escherichia coli), citotoxicidad mediante ensayo MTT contra cáncer de mama, línea celular MCF-7 IC50 a 251,99 μg/mL, genotoxicidad ADN fragmentado de MCF-7 por ensayo de cometa. En términos generales, la síntesis verde de rGO es segura, la nanoformulación biogénica desarrollable y de menor costo de Rhus coriaria (L.) iraquí; rGO posee aplicaciones terapéuticas antibacterianas y anticancerígenas.
Referencias
Al-Abboodi, M. H., Ajeel, F. N., & Khudhair, A. M. (2017). Influence of oxygen impurities on the electronic properties of graphene nanoflakes. Physica E: Low-dimensional Systems and Nanostructures, 88, 1-5. DOI: https://doi.org/10.1016/j.physe.2016.11.023
Alhwaige, A. A., Alhassan, S. M., Katsiotis, M. S., Ishida, H., & Qutubuddin, S. (2015). Interactions, morphology and thermal stability of graphene-oxide reinforced polymer aerogels derived from star-like telechelic aldehyde-terminal benzoxazine resin. RSC advances, 5(112), 92719-92731. doi:https://doi.org/10.1039/c5ra16188f DOI: https://doi.org/10.1039/C5RA16188F
Ansari, M. Z., Johari, R., & Siddiqi, W. A. (2019). Novel and green synthesis of chemically reduced graphene sheets using Phyllanthus emblica (Indian Gooseberry) and its photovoltaic activity. Materials Research Express, 6(5), 055027. doi:https://doi.org/10.1088/2053-1591/ab0439 DOI: https://doi.org/10.1088/2053-1591/ab0439
Aunkor, M., Mahbubul, I., Saidur, R., & Metselaar, H. (2015). Deoxygenation of graphene oxide using household baking soda as a reducing agent: a green approach. RSC advances, 5(86), 70461-70472. doi:https://doi.org/10.1039/c5ra10520j DOI: https://doi.org/10.1039/C5RA10520J
Bidan, A. K., & Al-Ali, Z. S. A. (2022). Biomedical Evaluation of Biosynthesized Silver Nanoparticles by Jasminum Sambac (L.) Aiton Against Breast Cancer Cell Line, and Both Bacterial Strains Colonies. International Journal of Nanoscience, 21(06), 2250042. DOI: https://doi.org/10.1142/S0219581X22500429
Bidan, A. K., & Al-Ali, Z. S. A. (2023). Oleic and Palmitic Acids with Bioderivatives Essential Oils Synthesized of Spherical Gold Nanoparticles and Its Anti-Human Breast Carcinoma MCF-7 In Vitro Examination. BioNanoScience, 1-14. DOI: https://doi.org/10.1007/s12668-023-01172-4
Chandu, B., Mosali, V. S. S., Mullamuri, B., & Bollikolla, H. B. (2017). A facile green reduction of graphene oxide using Annona squamosa leaf extract. Carbon letters, 21, 74-80. doi:http://doi.org/10.5714/cl.2017.21.074 DOI: https://doi.org/10.5714/CL.2017.21.074
Cheng, C., Li, S., Thomas, A., Kotov, N. A., & Haag, R. (2017). Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chemical reviews, 117(3), 1826-1914. doi:https://doi.org/10.1021/acs.chemrev.6b00520 DOI: https://doi.org/10.1021/acs.chemrev.6b00520
Choi, Y.-J., Gurunathan, S., & Kim, J.-H. (2018). Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. International Journal of Molecular Sciences, 19(3), 710. doi:https://doi.org/10.3390/ijms19030710 DOI: https://doi.org/10.3390/ijms19030710
Chu, H.-J., Lee, C.-Y., & Tai, N.-H. (2014). Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon, 80, 725-733. doi:http://doi.org/10.1016/j.carbon.2014.09.019 DOI: https://doi.org/10.1016/j.carbon.2014.09.019
Domenech, J., Rodríguez-Garraus, A., López de Cerain, A., Azqueta, A., & Catalán, J. (2022). Genotoxicity of Graphene-Based Materials. Nanomaterials, 12(11), 1795. doi:https://doi.org/10.3390/nano12111795 DOI: https://doi.org/10.3390/nano12111795
Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74-79. doi:https://doi.org/10.1016/j.ejbas.2016.11.002 DOI: https://doi.org/10.1016/j.ejbas.2016.11.002
Giovanelli, S., Giusti, G., Cioni, P. L., Minissale, P., Ciccarelli, D., & Pistelli, L. (2017). Aroma profile and essential oil composition of Rhus coriaria fruits from four Sicilian sites of collection. Industrial Crops and Products, 97, 166-174. doi:http://doi.org/10.1016/j.indcrop.2016.12.018 DOI: https://doi.org/10.1016/j.indcrop.2016.12.018
Haghighi, B., & Tabrizi, M. A. (2013). Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC advances, 3(32), 13365-13371. doi: https://doi.org/10.1039/c3ra40856f DOI: https://doi.org/10.1039/c3ra40856f
Hinzmann, M., Jaworski, S., Kutwin, M., Jagiełło, J., Koziński, R., Wierzbicki, M., Grodzik, M., Lipińska, L., Sawosz, E., & Chwalibog, A. (2014). Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastomamultiforme cells. International journal of nanomedicine, 9, 2409. doi:https://doi.org/10.2147/ijn.s62497 DOI: https://doi.org/10.2147/IJN.S62497
Jarosz, A., Skoda, M., Dudek, I., & Szukiewicz, D. (2016). Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxidative Medicine and Cellular Longevity, 2016. doi:https://doi.org/10.1155/2016/5851035 DOI: https://doi.org/10.1155/2016/5851035
Jiříčková, A., Jankovský, O., Sofer, Z., & Sedmidubský, D. (2022). Synthesis and applications of graphene oxide. Materials, 15(3), 920. doi:https://doi.org/10.3390/ma15030920 DOI: https://doi.org/10.3390/ma15030920
Khan, M., Al-Marri, A. H., Khan, M., Shaik, M. R., Mohri, N., Adil, S. F., Kuniyil, M., Alkhathlan, H. Z., Al-Warthan, A., & Tremel, W. (2015). Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale research letters, 10(1), 1-9. doi:http://doi.org/10.1186/s11671-015-0987-z DOI: https://doi.org/10.1186/s11671-015-0987-z
Kim, S.-G., Park, O.-K., Lee, J. H., & Ku, B.-C. (2013). Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon letters, 14(4), 247-250. doi:https://doi.org/10.5714/cl.2013.14.4.247 DOI: https://doi.org/10.5714/CL.2013.14.4.247
Lin, S., Ruan, J., & Wang, S. (2019). Biosynthesized of reduced graphene oxide nanosheets and its loading with paclitaxel for their anti cancer effect for treatment of lung cancer. Journal of Photochemistry and Photobiology B: Biology, 191, 13-17. DOI: https://doi.org/10.1016/j.jphotobiol.2018.11.015
Lingaraju, K., Naika, H. R., Nagaraju, G., & Nagabhushana, H. (2019). Biocompatible synthesis of reduced graphene oxide from Euphorbia heterophylla (L.) and their in-vitro cytotoxicity against human cancer cell lines. Biotechnology Reports, 24, e00376. doi:http://doi.org/10.1016/j.btre.2019.e00376 DOI: https://doi.org/10.1016/j.btre.2019.e00376
Ma, N., Zhang, B., Liu, J., Zhang, P., Li, Z., & Luan, Y. (2015). Green fabricated reduced graphene oxide: evaluation of its application as nano-carrier for pH-sensitive drug delivery. International Journal of Pharmaceutics, 496(2), 984-992. DOI: https://doi.org/10.1016/j.ijpharm.2015.10.081
Mahendran, R., Sridharan, D., Santhakumar, K., Selvakumar, T., Rajasekar, P., & Jang, J.-H. (2016). Graphene oxide reinforced polycarbonate nanocomposite films with antibacterial properties. Indian Journal of Materials Science, 2016. doi:https://doi.org/10.1155/2016/4169409 DOI: https://doi.org/10.1155/2016/4169409
Mahmoud, A. E. D. (2020). Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Materials Chemistry and Physics, 253, 123336. doi:https://doi.org/10.1016/j.matchemphys.2020.123336 DOI: https://doi.org/10.1016/j.matchemphys.2020.123336
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814. doi:https://doi.org/10.1021/nn1006368 DOI: https://doi.org/10.1021/nn1006368
Mazaheri, T., Hesarinejad, M., Razavi, S., Mohammadian, R., & Poorkian, S. (2017). Comparing physicochemical properties and antioxidant potential of sumac from Iran and turkey. MOJ Food Process Technol, 5(2), 288-294. doi:https://doi.org/10.15406/mojfpt.2017.05.00125 DOI: https://doi.org/10.15406/mojfpt.2017.05.00125
Muthoosamy, K., Abubakar, I. B., Bai, R. G., Loh, H.-S., & Manickam, S. (2016). Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Scientific reports, 6(1), 32808. DOI: https://doi.org/10.1038/srep32808
Nasar‐Abbas, S., Halkman, A. K., & Al‐Haq, M. (2004). Inhibition of some foodborne bacteria by alcohol extract of sumac (Rhus coriaria L.). Journal of food safety, 24(4), 257-267. doi:https://doi.org/10.1111/j.1745-4565.2004.00506.x DOI: https://doi.org/10.1111/j.1745-4565.2004.00506.x
Nostro, A., Guerrini, A., Marino, A., Tacchini, M., Di Giulio, M., Grandini, A., Akin, M., Cellini, L., Bisignano, G., & Saraçoğlu, H. T. (2016). In vitro activity of plant extracts against biofilm-producing food-related bacteria.
International Journal of Food Microbiology, 238, 33-39. doi:https://doi.org/10.1016/j.ijfoodmicro.2016.08.024 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.08.024
Olumurewa, K. O., Olofinjana, B., Fasakin, O., Eleruja, M. A., & Ajayi, E. O. B. (2017). Characterization of high yield graphene oxide synthesized by simplified hummers method. Graphene, 6(4), 85-98. doi:https://doi.org/10.4236/graphene.2017.64007 DOI: https://doi.org/10.4236/graphene.2017.64007
Punniyakotti, P., Aruliah, R., & Angaiah, S. (2021). Facile synthesis of reduced graphene oxide using Acalypha indica and Raphanus sativus extracts and their in vitro cytotoxicity activity against human breast (MCF-7) and lung (A549) cancer cell lines. 3 Biotech, 11(4), 1-11. doi:https://doi.org/10.1007/s13205-021-02689-9 DOI: https://doi.org/10.1007/s13205-021-02689-9
Rajivgandhi, G., Maruthupandy, M., Quero, F., & Li, W.-J. (2019). Graphene/nickel oxide nanocomposites against isolated ESBL producing bacteria and A549 cancer cells. Materials Science and Engineering: C, 102, 829-843. doi:https://doi.org/10.1016/j.msec.2019.05.008 DOI: https://doi.org/10.1016/j.msec.2019.05.008
Rani, M. N., Ananda, S., & Rangappa, D. (2017). Preparation of reduced graphene oxide and its antibacterial properties. Materials Today: Proceedings, 4(11), 12300-12305. doi:https://doi.org/10.1016/j.matpr.2017.09.163 DOI: https://doi.org/10.1016/j.matpr.2017.09.163
Rochman, R. A., Wahyuningsih, S., Ramelan, A. H., & Hanif, Q. A. (2019). Preparation of nitrogen and sulphur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom of thiourea. Paper presented at the IOP Conference Series: Materials Science and Engineering. DOI: https://doi.org/10.1088/1757-899X/509/1/012119
Singh, S. K., Singh, M. K., Kulkarni, P. P., Sonkar, V. K., Grácio, J. J., & Dash, D. (2012). Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS nano, 6(3), 2731-2740.
doi:https://doi.org/10.1021/nn300172t DOI: https://doi.org/10.1021/nn300172t
Tabish, T. A., Pranjol, M. Z. I., Hayat, H., Rahat, A. A., Abdullah, T. M., Whatmore, J. L., & Zhang, S. (2017). In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology, 28(50), 504001. doi:https://doi.org/10.1088/1361-6528/aa95a8 DOI: https://doi.org/10.1088/1361-6528/aa95a8
Thiyagarajulu, N., Arumugam, S., Narayanan, A. L., Mathivanan, T., & Renuka, R. R. (2020). Green synthesis of reduced graphene nanosheets using leaf extract of tridax procumbens and its potential in vitro biological activities. Biointerface Res. Appl. Chem, 11, 9975-9984. DOI: https://doi.org/10.33263/BRIAC113.99759984
Wu, C., Wu, X., Yang, Y., Zhou, X., & Wu, H. (2012). Biological Applications of Graphene and Graphene Oxide. Nano Biomedicine & Engineering, 4(3). DOI: https://doi.org/10.5101/nbe.v4i4.p157-162
Yi, J., Choe, G., Park, J., & Lee, J. Y. (2020). Graphene oxide-incorporated hydrogels for biomedical applications. Polymer Journal, 52(8), 823-837. DOI: https://doi.org/10.1038/s41428-020-0350-9
Zhu, C., Guo, S., Fang, Y., & Dong, S. (2010). Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS nano, 4(4), 2429-2437. DOI: https://doi.org/10.1021/nn1002387
Zou, X., Zhang, L., Wang, Z., & Luo, Y. (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the american chemical society, 138(7), 2064-2077. doi:https://doi.org/10.1021/jacs.5b11411 DOI: https://doi.org/10.1021/jacs.5b11411
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista de la Facultad de Ciencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR