Publicado

2024-01-01

REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES

EVALUACIÓN DE LAS LÁMINAS DE NANÓXIDO DE GRAFENO REDUCIDO DERIVADAS DE LOS FRUTOS DE RHUS CORIARIA (L).DE IRAK POR SUS PROPIEDADES ANTICANCERÍGENAS Y ANTIBACTERIANAS

DOI:

https://doi.org/10.15446/rev.fac.cienc.v13n1.110790

Palabras clave:

Iraqi Rhus coriaria (L.), MCF-7 breast cancer, mechanism of bioreduction rGO, reduced graphene oxide (rGO). (en)

Descargas

Autores/as

  • Amenah Amenah Department of Chemistry, College of Science, University of Thi-Qar, Irak
  • Zainab Al-Ali Department of Chemistry, College of Science, University of Basrah, Irak https://orcid.org/0000-0002-3389-9601

In this study, reduced graphene oxide nanosheets (rGO) were biosynthesized using the methanolic extract of Iraqi Rhus coriaria (L.) fruits with substantial bioreduction capabilities. The GC-MS analysis of the methanolic extract of Iraqi Rhus coriaria (L.) fruits was used to determine the synthesis mechanism of rGO nanosheets. The synthesized graphene oxide (GO) and the biosynthesized methanolic extract of Iraqi Rhus coriaria (L.) fruits-rGO nanosheets (MERCF-rGO) were characterized using UV-Vis at 226 nm, and 238 nm, respectively. FTIR explained the functional groups of GO and MERCF-rGO nanosheets, XRD spectra of the GO and MERCF-rGO show the sizes at 10.42 nm, and 4.07 nm, TEM observed the size of GO and MERCF-rGO at 15.54 nm and 9.6 nm. As well as FESEM of GO and MERCF-rGO was carried out to explain sheet shape about them. Raman spectroscopy of GO and MERCF-rGO displayed the two peaks D at (1353 cm-1, 1336 cm-1) and G at (1597 cm-1, 1594 cm-1) respectively. MERCF-rGO nanosheets showed activity against antibacterial gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli), cytotoxicity by MTT assay against breast cancer MCF-7 cell line IC50 at 251.99 μg/mL, genotoxicity fragmented DNA of MCF-7 by comet assay. Comprehensively, the green synthesis of rGO is safe, the lowest cost and developable biogenic nano-formulation of Iraqi Rhus coriaria (L.)–rGO owns antibacterial and anticancer therapeutic applications.

 

En este estudio, se biosintetizaron nanohojas de óxido de grafeno reducido (rGO) utilizando el extracto metanólico de frutos iraquíes de Rhus coriaria (L.) con importantes capacidades de biorreducción. El análisis GC-MS del extracto metanólico de los frutos iraquíes de Rhus coriaria (L.) se utilizó para determinar el mecanismo de síntesis de las nanohojas de rGO. El óxido de grafeno sintetizado (GO) y el extracto metanólico biosintetizado de nanohojas de frutos-rGO de Rhus coriaria (L.) iraquí (MERCF-rGO) se caracterizaron utilizando UV-Vis a 226 nm y 238 nm, respectivamente. FTIR explicó los grupos funcionales de las nanohojas GO y MERCF-rGO, los espectros XRD de GO y MERCF-rGO muestran los tamaños a 10,42 nm y 4,07 nm, TEM observó el tamaño de GO y MERCF-rGO a 15,54 nm y 9,6 nm. Además, se llevó a cabo FESEM de GO y MERCF-rGO para explicar la forma de las hojas. La espectroscopia Raman de GO y MERCF-rGO mostró los dos picos D en (1353 cm-1, 1336 cm-1) y G en (1597 cm-1, 1594 cm-1) respectivamente. Las nanohojas MERCF-rGO mostraron actividad contra antibacterianos grampositivos (Staphylococcus aureus) y gramnegativos (Escherichia coli), citotoxicidad mediante ensayo MTT contra cáncer de mama, línea celular MCF-7 IC50 a 251,99 μg/mL, genotoxicidad ADN fragmentado de MCF-7 por ensayo de cometa. En términos generales, la síntesis verde de rGO es segura, la nanoformulación biogénica desarrollable y de menor costo de Rhus coriaria (L.) iraquí; rGO posee aplicaciones terapéuticas antibacterianas y anticancerígenas.

Referencias

Al-Abboodi, M. H., Ajeel, F. N., & Khudhair, A. M. (2017). Influence of oxygen impurities on the electronic properties of graphene nanoflakes. Physica E: Low-dimensional Systems and Nanostructures, 88, 1-5. DOI: https://doi.org/10.1016/j.physe.2016.11.023

Alhwaige, A. A., Alhassan, S. M., Katsiotis, M. S., Ishida, H., & Qutubuddin, S. (2015). Interactions, morphology and thermal stability of graphene-oxide reinforced polymer aerogels derived from star-like telechelic aldehyde-terminal benzoxazine resin. RSC advances, 5(112), 92719-92731. doi:https://doi.org/10.1039/c5ra16188f DOI: https://doi.org/10.1039/C5RA16188F

Ansari, M. Z., Johari, R., & Siddiqi, W. A. (2019). Novel and green synthesis of chemically reduced graphene sheets using Phyllanthus emblica (Indian Gooseberry) and its photovoltaic activity. Materials Research Express, 6(5), 055027. doi:https://doi.org/10.1088/2053-1591/ab0439 DOI: https://doi.org/10.1088/2053-1591/ab0439

Aunkor, M., Mahbubul, I., Saidur, R., & Metselaar, H. (2015). Deoxygenation of graphene oxide using household baking soda as a reducing agent: a green approach. RSC advances, 5(86), 70461-70472. doi:https://doi.org/10.1039/c5ra10520j DOI: https://doi.org/10.1039/C5RA10520J

Bidan, A. K., & Al-Ali, Z. S. A. (2022). Biomedical Evaluation of Biosynthesized Silver Nanoparticles by Jasminum Sambac (L.) Aiton Against Breast Cancer Cell Line, and Both Bacterial Strains Colonies. International Journal of Nanoscience, 21(06), 2250042. DOI: https://doi.org/10.1142/S0219581X22500429

Bidan, A. K., & Al-Ali, Z. S. A. (2023). Oleic and Palmitic Acids with Bioderivatives Essential Oils Synthesized of Spherical Gold Nanoparticles and Its Anti-Human Breast Carcinoma MCF-7 In Vitro Examination. BioNanoScience, 1-14. DOI: https://doi.org/10.1007/s12668-023-01172-4

Chandu, B., Mosali, V. S. S., Mullamuri, B., & Bollikolla, H. B. (2017). A facile green reduction of graphene oxide using Annona squamosa leaf extract. Carbon letters, 21, 74-80. doi:http://doi.org/10.5714/cl.2017.21.074 DOI: https://doi.org/10.5714/CL.2017.21.074

Cheng, C., Li, S., Thomas, A., Kotov, N. A., & Haag, R. (2017). Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chemical reviews, 117(3), 1826-1914. doi:https://doi.org/10.1021/acs.chemrev.6b00520 DOI: https://doi.org/10.1021/acs.chemrev.6b00520

Choi, Y.-J., Gurunathan, S., & Kim, J.-H. (2018). Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. International Journal of Molecular Sciences, 19(3), 710. doi:https://doi.org/10.3390/ijms19030710 DOI: https://doi.org/10.3390/ijms19030710

Chu, H.-J., Lee, C.-Y., & Tai, N.-H. (2014). Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon, 80, 725-733. doi:http://doi.org/10.1016/j.carbon.2014.09.019 DOI: https://doi.org/10.1016/j.carbon.2014.09.019

Domenech, J., Rodríguez-Garraus, A., López de Cerain, A., Azqueta, A., & Catalán, J. (2022). Genotoxicity of Graphene-Based Materials. Nanomaterials, 12(11), 1795. doi:https://doi.org/10.3390/nano12111795 DOI: https://doi.org/10.3390/nano12111795

Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74-79. doi:https://doi.org/10.1016/j.ejbas.2016.11.002 DOI: https://doi.org/10.1016/j.ejbas.2016.11.002

Giovanelli, S., Giusti, G., Cioni, P. L., Minissale, P., Ciccarelli, D., & Pistelli, L. (2017). Aroma profile and essential oil composition of Rhus coriaria fruits from four Sicilian sites of collection. Industrial Crops and Products, 97, 166-174. doi:http://doi.org/10.1016/j.indcrop.2016.12.018 DOI: https://doi.org/10.1016/j.indcrop.2016.12.018

Haghighi, B., & Tabrizi, M. A. (2013). Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC advances, 3(32), 13365-13371. doi: https://doi.org/10.1039/c3ra40856f DOI: https://doi.org/10.1039/c3ra40856f

Hinzmann, M., Jaworski, S., Kutwin, M., Jagiełło, J., Koziński, R., Wierzbicki, M., Grodzik, M., Lipińska, L., Sawosz, E., & Chwalibog, A. (2014). Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastomamultiforme cells. International journal of nanomedicine, 9, 2409. doi:https://doi.org/10.2147/ijn.s62497 DOI: https://doi.org/10.2147/IJN.S62497

Jarosz, A., Skoda, M., Dudek, I., & Szukiewicz, D. (2016). Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxidative Medicine and Cellular Longevity, 2016. doi:https://doi.org/10.1155/2016/5851035 DOI: https://doi.org/10.1155/2016/5851035

Jiříčková, A., Jankovský, O., Sofer, Z., & Sedmidubský, D. (2022). Synthesis and applications of graphene oxide. Materials, 15(3), 920. doi:https://doi.org/10.3390/ma15030920 DOI: https://doi.org/10.3390/ma15030920

Khan, M., Al-Marri, A. H., Khan, M., Shaik, M. R., Mohri, N., Adil, S. F., Kuniyil, M., Alkhathlan, H. Z., Al-Warthan, A., & Tremel, W. (2015). Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale research letters, 10(1), 1-9. doi:http://doi.org/10.1186/s11671-015-0987-z DOI: https://doi.org/10.1186/s11671-015-0987-z

Kim, S.-G., Park, O.-K., Lee, J. H., & Ku, B.-C. (2013). Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon letters, 14(4), 247-250. doi:https://doi.org/10.5714/cl.2013.14.4.247 DOI: https://doi.org/10.5714/CL.2013.14.4.247

Lin, S., Ruan, J., & Wang, S. (2019). Biosynthesized of reduced graphene oxide nanosheets and its loading with paclitaxel for their anti cancer effect for treatment of lung cancer. Journal of Photochemistry and Photobiology B: Biology, 191, 13-17. DOI: https://doi.org/10.1016/j.jphotobiol.2018.11.015

Lingaraju, K., Naika, H. R., Nagaraju, G., & Nagabhushana, H. (2019). Biocompatible synthesis of reduced graphene oxide from Euphorbia heterophylla (L.) and their in-vitro cytotoxicity against human cancer cell lines. Biotechnology Reports, 24, e00376. doi:http://doi.org/10.1016/j.btre.2019.e00376 DOI: https://doi.org/10.1016/j.btre.2019.e00376

Ma, N., Zhang, B., Liu, J., Zhang, P., Li, Z., & Luan, Y. (2015). Green fabricated reduced graphene oxide: evaluation of its application as nano-carrier for pH-sensitive drug delivery. International Journal of Pharmaceutics, 496(2), 984-992. DOI: https://doi.org/10.1016/j.ijpharm.2015.10.081

Mahendran, R., Sridharan, D., Santhakumar, K., Selvakumar, T., Rajasekar, P., & Jang, J.-H. (2016). Graphene oxide reinforced polycarbonate nanocomposite films with antibacterial properties. Indian Journal of Materials Science, 2016. doi:https://doi.org/10.1155/2016/4169409 DOI: https://doi.org/10.1155/2016/4169409

Mahmoud, A. E. D. (2020). Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Materials Chemistry and Physics, 253, 123336. doi:https://doi.org/10.1016/j.matchemphys.2020.123336 DOI: https://doi.org/10.1016/j.matchemphys.2020.123336

Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814. doi:https://doi.org/10.1021/nn1006368 DOI: https://doi.org/10.1021/nn1006368

Mazaheri, T., Hesarinejad, M., Razavi, S., Mohammadian, R., & Poorkian, S. (2017). Comparing physicochemical properties and antioxidant potential of sumac from Iran and turkey. MOJ Food Process Technol, 5(2), 288-294. doi:https://doi.org/10.15406/mojfpt.2017.05.00125 DOI: https://doi.org/10.15406/mojfpt.2017.05.00125

Muthoosamy, K., Abubakar, I. B., Bai, R. G., Loh, H.-S., & Manickam, S. (2016). Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Scientific reports, 6(1), 32808. DOI: https://doi.org/10.1038/srep32808

Nasar‐Abbas, S., Halkman, A. K., & Al‐Haq, M. (2004). Inhibition of some foodborne bacteria by alcohol extract of sumac (Rhus coriaria L.). Journal of food safety, 24(4), 257-267. doi:https://doi.org/10.1111/j.1745-4565.2004.00506.x DOI: https://doi.org/10.1111/j.1745-4565.2004.00506.x

Nostro, A., Guerrini, A., Marino, A., Tacchini, M., Di Giulio, M., Grandini, A., Akin, M., Cellini, L., Bisignano, G., & Saraçoğlu, H. T. (2016). In vitro activity of plant extracts against biofilm-producing food-related bacteria.

International Journal of Food Microbiology, 238, 33-39. doi:https://doi.org/10.1016/j.ijfoodmicro.2016.08.024 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.08.024

Olumurewa, K. O., Olofinjana, B., Fasakin, O., Eleruja, M. A., & Ajayi, E. O. B. (2017). Characterization of high yield graphene oxide synthesized by simplified hummers method. Graphene, 6(4), 85-98. doi:https://doi.org/10.4236/graphene.2017.64007 DOI: https://doi.org/10.4236/graphene.2017.64007

Punniyakotti, P., Aruliah, R., & Angaiah, S. (2021). Facile synthesis of reduced graphene oxide using Acalypha indica and Raphanus sativus extracts and their in vitro cytotoxicity activity against human breast (MCF-7) and lung (A549) cancer cell lines. 3 Biotech, 11(4), 1-11. doi:https://doi.org/10.1007/s13205-021-02689-9 DOI: https://doi.org/10.1007/s13205-021-02689-9

Rajivgandhi, G., Maruthupandy, M., Quero, F., & Li, W.-J. (2019). Graphene/nickel oxide nanocomposites against isolated ESBL producing bacteria and A549 cancer cells. Materials Science and Engineering: C, 102, 829-843. doi:https://doi.org/10.1016/j.msec.2019.05.008 DOI: https://doi.org/10.1016/j.msec.2019.05.008

Rani, M. N., Ananda, S., & Rangappa, D. (2017). Preparation of reduced graphene oxide and its antibacterial properties. Materials Today: Proceedings, 4(11), 12300-12305. doi:https://doi.org/10.1016/j.matpr.2017.09.163 DOI: https://doi.org/10.1016/j.matpr.2017.09.163

Rochman, R. A., Wahyuningsih, S., Ramelan, A. H., & Hanif, Q. A. (2019). Preparation of nitrogen and sulphur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom of thiourea. Paper presented at the IOP Conference Series: Materials Science and Engineering. DOI: https://doi.org/10.1088/1757-899X/509/1/012119

Singh, S. K., Singh, M. K., Kulkarni, P. P., Sonkar, V. K., Grácio, J. J., & Dash, D. (2012). Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS nano, 6(3), 2731-2740.

doi:https://doi.org/10.1021/nn300172t DOI: https://doi.org/10.1021/nn300172t

Tabish, T. A., Pranjol, M. Z. I., Hayat, H., Rahat, A. A., Abdullah, T. M., Whatmore, J. L., & Zhang, S. (2017). In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology, 28(50), 504001. doi:https://doi.org/10.1088/1361-6528/aa95a8 DOI: https://doi.org/10.1088/1361-6528/aa95a8

Thiyagarajulu, N., Arumugam, S., Narayanan, A. L., Mathivanan, T., & Renuka, R. R. (2020). Green synthesis of reduced graphene nanosheets using leaf extract of tridax procumbens and its potential in vitro biological activities. Biointerface Res. Appl. Chem, 11, 9975-9984. DOI: https://doi.org/10.33263/BRIAC113.99759984

Wu, C., Wu, X., Yang, Y., Zhou, X., & Wu, H. (2012). Biological Applications of Graphene and Graphene Oxide. Nano Biomedicine & Engineering, 4(3). DOI: https://doi.org/10.5101/nbe.v4i4.p157-162

Yi, J., Choe, G., Park, J., & Lee, J. Y. (2020). Graphene oxide-incorporated hydrogels for biomedical applications. Polymer Journal, 52(8), 823-837. DOI: https://doi.org/10.1038/s41428-020-0350-9

Zhu, C., Guo, S., Fang, Y., & Dong, S. (2010). Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS nano, 4(4), 2429-2437. DOI: https://doi.org/10.1021/nn1002387

Zou, X., Zhang, L., Wang, Z., & Luo, Y. (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the american chemical society, 138(7), 2064-2077. doi:https://doi.org/10.1021/jacs.5b11411 DOI: https://doi.org/10.1021/jacs.5b11411

Cómo citar

APA

Amenah, A. y Al-Ali, Z. (2024). REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES. Revista de la Facultad de Ciencias, 13(1), 49–72. https://doi.org/10.15446/rev.fac.cienc.v13n1.110790

ACM

[1]
Amenah, A. y Al-Ali, Z. 2024. REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES. Revista de la Facultad de Ciencias. 13, 1 (ene. 2024), 49–72. DOI:https://doi.org/10.15446/rev.fac.cienc.v13n1.110790.

ACS

(1)
Amenah, A.; Al-Ali, Z. REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES. Rev. Fac. Cienc. 2024, 13, 49-72.

ABNT

AMENAH, A.; AL-ALI, Z. REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES. Revista de la Facultad de Ciencias, [S. l.], v. 13, n. 1, p. 49–72, 2024. DOI: 10.15446/rev.fac.cienc.v13n1.110790. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/110790. Acesso em: 30 jul. 2024.

Chicago

Amenah, Amenah, y Zainab Al-Ali. 2024. «REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES». Revista De La Facultad De Ciencias 13 (1):49-72. https://doi.org/10.15446/rev.fac.cienc.v13n1.110790.

Harvard

Amenah, A. y Al-Ali, Z. (2024) «REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES», Revista de la Facultad de Ciencias, 13(1), pp. 49–72. doi: 10.15446/rev.fac.cienc.v13n1.110790.

IEEE

[1]
A. Amenah y Z. Al-Ali, «REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES», Rev. Fac. Cienc., vol. 13, n.º 1, pp. 49–72, ene. 2024.

MLA

Amenah, A., y Z. Al-Ali. «REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES». Revista de la Facultad de Ciencias, vol. 13, n.º 1, enero de 2024, pp. 49-72, doi:10.15446/rev.fac.cienc.v13n1.110790.

Turabian

Amenah, Amenah, y Zainab Al-Ali. «REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES». Revista de la Facultad de Ciencias 13, no. 1 (enero 1, 2024): 49–72. Accedido julio 30, 2024. https://revistas.unal.edu.co/index.php/rfc/article/view/110790.

Vancouver

1.
Amenah A, Al-Ali Z. REDUCED GRAPHENE OXIDE NANOSHEETS DERIVED FROM IRAQI RHUS CORIARIA (L.) FRUITS WERE EVALUATED FOR THEIR ANTICANCER AND ANTIBACTERIAL PROPERTIES. Rev. Fac. Cienc. [Internet]. 1 de enero de 2024 [citado 30 de julio de 2024];13(1):49-72. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/110790

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

117

Descargas

Los datos de descargas todavía no están disponibles.