Publicado

2025-07-01

CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO

DOPING CHROMIUM ON THE SILICON CARBIDE NANOSURFACE FOR GRABBING CO2, CO, NO2 OR NO: APPLICATION OF NANOMATERIALS TOWARD CLEAN AIR

DOI:

https://doi.org/10.15446/rev.fac.cienc.v14n2.113729

Palabras clave:

SiC, GM@ Cr–SiC_sh, sensor de gas, DFT (es)
SiC, GM@ Cr–SiC_sh, gas sensor, DFT (en)

Descargas

Autores/as

Se requiere una rápida desfosilización del sector industrial para detener las emisiones de gases de efecto invernadero y frenar el calentamiento global. Se presenta un nuevo enfoque para almacenar gases provenientes de instalaciones de captura directa de aire en carburo de silicio (SiC) sólido. Las propiedades termoquímicas, eléctricas y magnéticas de la lámina monocapa de SiC dopada con metal de cromo (Cr) se estudian mediante métodos de primeros principios basados en la teoría funcional de la densidad (DFT) para la eliminación de CO, CO2, NO, Moléculas de gas NO2. Los resultados recomiendan que la adsorción de estas moléculas de gas en la monocapa de lámina de SiC incrustada en Cr es más energéticamente deseada que en las prístinas. Las moléculas de gas de CO, CO2, NO, NO2 se han adsorbido en el sitio Cr de la monocapa de SiC dopada mediante la formación de enlaces covalentes. La suposición de adsorciones químicas ha sido aprobada por la densidad proyectada de estados (PDOS) y los gráficos de diferencia de densidad de carga. Los cálculos de diferencia de densidad de carga también indican que las densidades electrónicas se acumularon principalmente en el adsorbato de moléculas de gas CO, CO2, NO, NO2. Los resultados de esta investigación pueden indicar la competencia de las nanoláminas de carburo de silicio dopadas con metales de transición en dispositivos sensores.

Thermochemical, electric, and magnetic properties of chromium (Cr) metal-doped graphene-like silicon carbide (SiC) monolayer sheet are studied by the first-principles methods based on the density functional theory (DFT) for scavenging of CO, CO2, NO, NO2 gas molecules. The results recommend that the adsorption of these gas molecules on Cr-embedded SiC sheet monolayer is more energetically desired than that on the pristine ones. Gas molecules of CO, CO2, NO, NO2 have been adsorbed on the Cr site of doped SiC monolayer through the formation of covalent bonds. The assumption of chemical adsorptions has been approved by the projected density of states (PDOS) and charge density difference plots. Charge density difference calculations also indicate that the electronic densities were mainly accumulated on the adsorbate of CO, CO2, NO, NO2 gas molecules. The results in this investigation can indicate the competence of transition metal doped silicon carbide nanosheet in sensor devices.

Referencias

Ahmed, H. & Hashim, A. (2021). Structural, Optical and Electronic Properties of Silicon Carbide Doped PVA/NiO for Low Cost Electronics Applications. Silicon 13, 1509–1518. https://doi.org/10.1007/s12633-020-00543-w.

Belarouci,S. Ouahrani,T. Benabdallah, N. Morales-García, Á. & Belabbas, I. (2018). Two-dimensional silicon carbide structure under uniaxial strains, electronic and bonding analysis. Computational Materials Science. 151, 288–295. https://doi.org/10.1016/j.commatsci.2018.05.020.

Bizyaev, I. Gabdullin, P. Chumak, M. Babyuk, V. Davydov, S. Osipov, V. Kuznetsov, A. Kvashenkina, O. & Arkhipov, A. (2021). Low-Field Electron Emission Capability of Thin Films on Flat Silicon Substrates: Experiments with Mo and General Model for Refractory Metals and Carbon. Nanomaterials. 11, 3350. https://doi.org/10.3390/nano11123350.

Budker, D. & Romalis, M. (2007). Optical magnetometry. Nature Phys. 3, 227–234. https://doi.org/10.1038/nphys566.

Daliev, Kh.S. Utamuradova, Sh.B. Khamdamov,J.J. Bahronkulov, Z.E. (2024). Electrophysical properties of silicon doped with lutetium. Advanced Physical Research. 6, 42–49. https://doi.org/10.62476/apr61.49.

Davydov, S.Y. Posrednik, O.V. (2019). On the Adsorption of Gases on Silicon Carbide: Simple Estimates. Phys. Solid State. 61, 1490–1493. https://doi.org/10.1134/S1063783419080109.

Dennington, R. Keith, T.A. & Millam, J.M. (2016). GaussView. Version 6. Shawnee Mission (KS): Semichem Inc.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. (2016). Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT.

Gregorovič, A. (2015). Quantitative Analysis of Hydration Using Nitrogen−14 Nuclear Quadrupole Resonance. Anal. Chem. 87, 6912–6918. https://doi.org/10.1021/acs.analchem.5b01492.

Hammudi, R.A. Mahmood, M.A. (2025). Study the effect of relationship between heat treatment and mechanical characteristic behavior of aluminum-boron carbide composite prepared use powder metallurgy technique. Advanced Physical Research. 7, 102–110. https://doi.org/10.62476/apr.71102

Kohn, W. Becke, A.D. & Parr, R.G. (1996). Density Functional Theory of Electronic Structure. J. Phys. Chem. 100, 12974–12980. https://doi.org/10.1021/jp960669l.

Kresse, G. & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186.https://doi.org/10.1103/PhysRevB.54.11169.

Kresse, G. & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758.

Kyriakidou, G. Jakobsson, A. Althoefer, K. & Barras, J. (2015). Batch-Specific Discrimination Using Nuclear Quadrupole Resonance Spectroscopy. Anal. Chem. 87, 3806–3811. https://doi.org/10.1021/ac5044658.

Li, C. Li, D. Zhang, L. et al. (2023). Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Res. 16, 3570–3579. https://doi.org/10.1007/s12274-023-5398-3.

Luo, M. Shen, Y.H. (2018). Magnetic Properties of SiC Monolayer with Different Nonmagnetic Metal Dopants. J. Supercond. Nov. Magn. 31, 3277–3282. https://doi.org/10.1007/s10948-018-4589-8

Majid, A. Akhtar, SeA. Sandhu, QuA. et al. (2021). Iodide Adsorption on Transition-Metal-Doped SiC Monolayers: A Density Functional Theory Based Bonding Analysis. J. Electron. Mater. 50, 3546–3556. https://doi.org/10.1007/s11664-021-08876-x.

Mamadalimov, A.T. Isaev, M.Sh. Karimov, M.K. Isaev, F.M. Muminova, Z.A. Karimova, S.T. Kayumova, M.R. Badalova, G.T. Abdurazzakov, Kh.T. (2024). Advanced Physical Research. 6, 50–55. https://doi.org/10.62476/apr61.55.

Mollaamin, F. & Monajjemi, M. (2023a). Doping of Graphene Nanostructure with Iron, Nickel and Zinc as Selective Detector for the Toxic Gas Removal: A Density Functional Theory Study. C– Journal of Carbon Research. 9, 20. https://doi.org/10.3390/c9010020.

Mollaamin, F. & Monajjemi, M. (2023b). Graphene Embedded with Transition Metals for Capturing Carbon Dioxide: Gas Detection Study Using QM Methods. Clean Technol. 5(1), 403–417. https://doi.org/10.3390/cleantechnol5010020.

Mollaamin, F. & Monajjemi, M. (2023c). Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: a molecular modeling framework by DFT perspective. J Mol Model. 29, 119. https://doi.org/10.1007/s00894-023-05526-3.

Mollaamin, F. & Monajjemi, M. (2023d). Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sensors for NO, NO2, and NH3 adsorbing: a DFT study. J Mol Model 29, 170. https://doi.org/10.1007/s00894-023-05567-8.

Mollaamin, F. & Monajjemi, M. (2023e). Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method. Sensor Review, 43(4), 266–279. https://doi.org/10.1108/SR-03-2023-0040.

Mollaamin, F. & Monajjemi, M. (2023f). Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Molecular Simulation. 49 (4). 365–376. https://doi.org/10.1080/08927022.2022.2159996.

Mollaamin, F., Shahriari, S., Monajjemi, M. & Khalaj, Z. (2023). Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption. J Clust Sci 34, 1547–1562. https://doi.org/10.1007/s10876-022-02335-1.

Perdew, J.P. Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.

Parr, R.G. & Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 105, 7512–7516. http://dx.doi.org/10.1021/ja00364a005.

Politzer, P. & Abu-Awwad, F. (1998). A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theor. Chem. Acc. 99, 83–87. https://doi.org/10.1007/s002140050307.

Qin, T. Wang, Z. Wang, Y. et al. (2021). Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. Nano-Micro Lett. 13, 183. https://doi.org/10.1007/s40820-021-00710-7.

Rusho, M.A. Sharma, P., Ibrahim, S.K. et al. (2025). Silicon Carbide Monolayer as a Promising Material for the Adsorption of SF6 Decomposed Gases. Silicon. 17, 789–798 (2025). https://doi.org/10.1007/s12633-025-03233-7.

Silverstein, R.M. Bassler, G.C. & Morrill, T.C. (1981). Spectrometric Identification of Organic Compounds, 5th ed., John Wiley & Sons, Inc., New York.

Singh, R.S. (2023). CO2 Capture by Metal-Decorated Silicon Carbide Nanotubes. Silicon 15, 4501–4511. https://doi.org/10.1007/s12633-023-02368-9.

Soliman, K.A. & Aal, S.A. (2022). The efficiency of n- and p-type doping silicon carbide nanocage toward (NO2, SO2, and NH3) gases. Chem. Pap. 76, 4835–4853. https://doi.org/10.1007/s11696-022-02183-3.

Utamuradova, Sh.B. Daliev, Sh.Kh. Bokiyev,B.R. Zarifbaev, J.Sh. (2024). X-ray spectroscopy of silicon doped with germanium atoms. Advanced Physical Research. 6, 211–218. https://doi.org/10.62476/apr63211.

Xi, G. Liu, Y. Liu, X. Wang,X. Qian, Y. (2006). Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures. J. Phys. Chem. B 110, 14172–14178. https://doi.org/10.1021/jp0617468.

Zabolotnov, A.S., Gostev, S.S., Maklakova, I.A. et al. (2023). Influence of an Ultralow Graphene Content on the Physical and Mechanical Characteristics of UHMWPE-Based Composites. Russ. J. Phys. Chem. B 17, 1409–1413. https://doi.org/10.1134/S1990793123060258.

Ziqi Yan, Z. Bai, Y. & Sun,L. (2019). Adsorption of thiophene and SOx molecules on Cr-doped and Ti-doped graphene nanosheets: a DFT study. Materials Research Express. 6, 125067. https://doi.org/10.1088/2053-1591/ab599d.

Zolotarev, K.V. Mikhailov, A.N. Nakhod, V.I.Tikhonova, E.G. Mikhailova, M.V. (2024). Characterization and in vivo toxicity assay of uncoated silicon nanoparticles. New Materials, Compounds and Applications. 8, 162-170. https://doi.org/10.62476/nmca82162.

Cómo citar

APA

Mollaamin, F. (2025). CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO. Revista de la Facultad de Ciencias, 14(2), 108–125. https://doi.org/10.15446/rev.fac.cienc.v14n2.113729

ACM

[1]
Mollaamin, F. 2025. CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO. Revista de la Facultad de Ciencias. 14, 2 (jul. 2025), 108–125. DOI:https://doi.org/10.15446/rev.fac.cienc.v14n2.113729.

ACS

(1)
Mollaamin, F. CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO. Rev. Fac. Cienc. 2025, 14, 108-125.

ABNT

MOLLAAMIN, F. CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO. Revista de la Facultad de Ciencias, [S. l.], v. 14, n. 2, p. 108–125, 2025. DOI: 10.15446/rev.fac.cienc.v14n2.113729. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/113729. Acesso em: 28 dic. 2025.

Chicago

Mollaamin, Fatemeh. 2025. «CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO». Revista De La Facultad De Ciencias 14 (2):108-25. https://doi.org/10.15446/rev.fac.cienc.v14n2.113729.

Harvard

Mollaamin, F. (2025) «CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO», Revista de la Facultad de Ciencias, 14(2), pp. 108–125. doi: 10.15446/rev.fac.cienc.v14n2.113729.

IEEE

[1]
F. Mollaamin, «CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO», Rev. Fac. Cienc., vol. 14, n.º 2, pp. 108–125, jul. 2025.

MLA

Mollaamin, F. «CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO». Revista de la Facultad de Ciencias, vol. 14, n.º 2, julio de 2025, pp. 108-25, doi:10.15446/rev.fac.cienc.v14n2.113729.

Turabian

Mollaamin, Fatemeh. «CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO». Revista de la Facultad de Ciencias 14, no. 2 (julio 1, 2025): 108–125. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/rfc/article/view/113729.

Vancouver

1.
Mollaamin F. CROMO DOPADO EN LA NANOSUPERFICIE DE CARBURO DE SSILICIO PARA CAPTURAR CO2, CO, NO2 O NO: APLICACIÓN DE NANOMATERIALES AL AIRE LIMPIO. Rev. Fac. Cienc. [Internet]. 1 de julio de 2025 [citado 28 de diciembre de 2025];14(2):108-25. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/113729

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

176

Descargas

Los datos de descargas todavía no están disponibles.