UN ENFOQUE PROMETEDOR PARA LA PRODUCCIÓN DE ENERGÍA SOSTENIBLE Y RESPETUOSA CON EL MEDIO AMBIENTE UTILIZANDO NANOCOMPUESTOS BASADOS EN NITRURO MEDIANTE DOPAJE ATÓMICO
A PROMISING APPROACH FOR SUSTAINABLE ECO-FRIENDLY ENERGY PRODUCTION USING NITRIDE-BASED NANOCOMPOSITES THROUGH ATOM IMPLEMENTING
DOI:
https://doi.org/10.15446/rev.fac.cienc.v14n2.117403Palabras clave:
BN, Almacenamiento de hidrógeno, Celda de batería, Nanomaterial, Dopaje, DFT (es)BN, Hydrogen storage, Battery cell, Nanomaterial, Doping, DFT (en)
Descargas
Se ha investigado la adsorción de hidrógeno mediante nanojaulas de nitruro de boro dopadas con X (X=Al, C, Si) utilizando la teoría del funcional de la densidad. La densidad parcial de estados (PDOS) puede evaluar un ensamblaje de carga determinado entre moléculas de hidrógeno y X–BN, lo que indica la competencia entre complejos dominantes de metales (Al), no metálicos (C) y metaloides/semiconductores (Si). Con base en el análisis de resonancia cuadrupolar nuclear (RCN), el dopado con carbono sobre BN ha mostrado la fluctuación más baja en el potencial eléctrico y la carga atómica negativa más alta en átomos dopantes, incluidos C, Si y Al, incluidos 0,1167, 1,0620 y 1,1541 coulomb en H@C–BN, H@Si–BN y H@Al–BN. Además, los resultados informados de la espectroscopia de RMN han demostrado que el rendimiento de aceptación de electrones para átomos dopantes en el X–BN a través de la adsorción de H2 se puede ordenar como: Si≈Al>C. En cuanto a la espectroscopia IR, las nanojaulas dopadas de H@Si–BN≈H@Al–BN>H@C–BN, respectivamente, tienen la mayor cantidad de fluctuaciones y la mayor tendencia de adsorción para las moléculas de hidrógeno. Finalmente, la alta selectividad de la nanojaula dopada con átomos sobre nitruro de boro para la adsorción de moléculas de H2 ha resultado como: H@Si–BN > H@Al–BN>>>H@C–BN. Nuestros hallazgos preparan visiones importantes sobre el potencial de emplear nanojaulas X (X=Al, C, Si) –BN en enfoques de almacenamiento de energía basados en hidrógeno. El análisis reveló que el Si–BN exhibió mejores interacciones y, por lo tanto, mejor capacidad de adsorción hacia el gas H2 que el BN prístino y otros dopados.
Hydrogen adsorption by using X (X=Al, C, Si)-doped boron nitride nanocage (BN) have been investigated using density functional theory. The partial density of states (PDOS) can evaluate a determined charge assembly between hydrogen molecules and X–BN which indicates the competition among dominant complexes of metallic (Al), nonmetallic (C), metalloid/semiconductor (Si). Based on NQR analysis, carbon-doped on BN has shown the lowest fluctuation in electric potential and the highest negative atomic charge on doping atoms including C, Si, and Al including 0.1167, 1.0620, and 1.1541 coulomb in H@C–BN, H@Si–BN, and H@Al–BN. Furthermore, the reported results of NMR spectroscopy have exhibited that the yield of electron accepting for doping atoms on the X–BN_NC through H2 adsorption can be ordered as: Si≈Al>C. Regarding IR spectroscopy, doped nanocages of H@Si–BN≈H@Al–BN>H@C–BN, respectively, have the most fluctuations and the highest adsorption tendency for hydrogen molecules. Finally, high selectivity of atom-doped on boron nitride nanocage for H2 molecules adsorption has been resulted as: H@Si–BN > H@Al–BN>>> H@C–BN. Our findings prepare important visions into the potential of employing X (X=Al, C, Si) –BN nanocages in hydrogen-based energy-storage approaches. The analysis revealed that Si–BN exhibited better interactions and, therefore, better adsorption ability towards H2 gas than pristine and other doped BN.
Referencias
Arrigoni, M. & Madsen, G.K.H. (2019). Comparing the performance of LDA and GGA functionals in predicting the T lattice thermal conductivity of III-V semiconductor materials in the zincblende structure: The cases of AlAs and Bas, Comput. Mater. Sci. 156, 354-360. https://doi.org/10.1016/j.commatsci.2018.10.005. DOI: https://doi.org/10.1016/j.commatsci.2018.10.005
Bangari, R.S. Yadav, V.K. Singh, J.K. Sinha, N. (2020). Fe3O4-functionalized boron nitride nanosheets as novel adsorbents for removal of arsenic (III) from contaminated water, ACS Omega. 5 (18), 10301-10314. https://doi.org/10.1021/acsomega.9b04295. DOI: https://doi.org/10.1021/acsomega.9b04295
Cardella, U. Decker, & L. Klein, H. (2017). Economically viable large-scale hydrogen liquefaction, IOP Conf. Ser.: Mater. Sci. Eng. 171, 012013. https://doi.org/10.1088/1757-899x/171/1/012013. DOI: https://doi.org/10.1088/1757-899X/171/1/012013
Cardella, U. Decker, L. Sundberg, J. Klein, H. (2017). Process optimization for large-scale hydrogen liquefaction, Int. J. Hydrogen Energy. 42, 12339-12354. https://doi.org/10.1016/j.ijhydene.2017.03.167. DOI: https://doi.org/10.1016/j.ijhydene.2017.03.167
Chao, Y. Zhang, J. Li, H. Wu, P. Li, X. Chang, H. He, J. et al. (2020). Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal, Chem. Eng. J., 387, 124138. https://doi.org/10.1016/j.cej.2020.124138. DOI: https://doi.org/10.1016/j.cej.2020.124138
Chettri, B. Patra, P. K. Srivastava, S. Lalhriatzuala, Zadeng, L. Rai, D. P. (2019). Electronic Properties of Hydrogenated Hexagonal Boron Nitride (h-BN): DFT Study, Senhri Journal of Multidisciplinary Studies. 4, 72-79. https://doi.org/10.36110/sjms.2019.04.02.008 DOI: https://doi.org/10.36110/sjms.2019.04.02.008
Chigo-Anota, E. Escobedo-Morales, A. Hernández-Cocoletzi, H. López y López, J.G. (2015). Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: Structural stability, physicochemistry and drug delivery perspectives, Physica E: Low-dimensional Systems and Nanostructures. 74, 538-543. https://doi.org/10.1016/j.physe.2015.08.008. DOI: https://doi.org/10.1016/j.physe.2015.08.008
Davies, A. Albar, J.D. Summerfield, A. Thomas, J.C. Cheng, T.S. Korolkov, V.V. Stapleton, E. et al. (2018). Lattice-Matched Epitaxial Graphene Grown on Boron Nitride, Nano Lett. 18, 498-504. https://doi.org/10.1021/acs.nanolett.7b04453. DOI: https://doi.org/10.1021/acs.nanolett.7b04453
Dennington, R. Keith, T.A. & Millam, J.M. (2016). GaussView, Version 6.06.16, Semichem Inc., Shawnee Mission, KS.
Frisch, M. J. Trucks, G. W. Schlegel, H. B. Scuseria, G. E. Robb, M. A. Cheeseman, J. R. Scalmani, G. et al. (2016). Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT.
Gonzalez-Ortiz, D. Salameh, C. Bechelany, M. Miele, P. (2020). Nanostructured boron nitride-based materials: synthesis and applications, Mater. Today Adv. 8, 100107. https://doi.org/10.1016/j.mtadv.2020.100107. DOI: https://doi.org/10.1016/j.mtadv.2020.100107
Guo, Y. Wang, R.X. Wang, P.F. Rao, L. Wang, C. (2019). Developing a novel layered boron nitride-carbon nitride composite with high efficiency and selectivity to remove protonated dyes from water, ACS Sustain. Chem. 7 (6), 5727-5741. https://doi.org/10.1021/ACSSUSCHEMENG.8B05150. DOI: https://doi.org/10.1021/acssuschemeng.8b05150
Hammad, A. & Dincer, I. (2018). Analysis and assessment of an advanced hydrogen liquefaction system, Int. J. Hydrogen Energy. 43, 1139-1151. https://doi.org/10.1016/j.ijhydene.2017.10.158. DOI: https://doi.org/10.1016/j.ijhydene.2017.10.158
Henkelman, G. Arnaldsson, A. & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density, Computational Materials Science. 36(3), 354-360. https://doi.org/10.1016/j.commatsci.2005.04.010. DOI: https://doi.org/10.1016/j.commatsci.2005.04.010
Hohenberg, P. & Kohn, W. (1964). Inhomogeneous Electron Gas, Phys. Rev. B., 136, B864-B871. https://doi.org/10.1103/PhysRev.136.B864. DOI: https://doi.org/10.1103/PhysRev.136.B864
Khalili Hadad, B. Mollaamin, F. & Monajjemi, M. (2011). Biophysical chemistry of macrocycles for drug delivery: a theoretical study, Russ. Chem. Bulletin, 60, 238-241. https://doi.org/10.1007/s11172-011-0039-5. DOI: https://doi.org/10.1007/s11172-011-0039-5
Kohn, W. & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133
Lee, C. Yang, W. & Parr, R.G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B., 37:785-789. https://doi.org/10.1103/PhysRevB.37.785. DOI: https://doi.org/10.1103/PhysRevB.37.785
Mishra, N.S. Saravanan, P. (2018). A review on the synergistic features of hexagonal boron nitride (white graphene) as adsorbent-photo active nanomaterial, ChemistrySelect. 3 (28) 8023-8034. https://doi.org/10.1002/slct.201801524. DOI: https://doi.org/10.1002/slct.201801524
Mollaamin, F. (2014). Features of parametric point nuclear magnetic resonance of metals implantation on boron nitride nanotube by density functional theory/electron paramagnetic resonance. J Comput Theor Nanosci. 11(11), 2393-2398. https://doi.org/10.1166/jctn.2014.3653. DOI: https://doi.org/10.1166/jctn.2014.3653
Mollaamin, F. (2024). Competitive Intracellular Hydrogen-Nanocarrier Among Aluminum, Carbon, or Silicon Implantation: a Novel Technology of Eco-Friendly Energy Storage using Research Density Functional Theory, Russ. J. Phys. Chem. B., 18, 805-820. https://doi.org/10.1134/S1990793124700131. DOI: https://doi.org/10.1134/S1990793124700131
Mollaamin, F. & Monajjemi, M. (2012). Fractal dimension on carbon nanotube-polymer composite materials using percolation theory, Journal of Computational and Theoretical Nanoscience. 9(4), 597-601. https://doi.org/10.1166/jctn.2012.2067. DOI: https://doi.org/10.1166/jctn.2012.2067
Mollaamin, F. & Monajjemi, M. (2023a). Electric and Magnetic Evaluation of Aluminum–Magnesium Nanoalloy Decorated with Germanium Through Heterocyclic Carbenes Adsorption: A Density Functional Theory Study, Russ. J. Phys. Chem. B., 17, 658-672. https://doi.org/10.1134/S1990793123030223. DOI: https://doi.org/10.1134/S1990793123030223
Mollaamin, F. & Monajjemi, M. (2023b). Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sensors for NO, NO2, and NH3 adsorbing: a DFT study, J Mol Model. 29, 170. https://doi.org/10.1007/s00894-023-05567-8. DOI: https://doi.org/10.1007/s00894-023-05567-8
Mollaamin, F. & Monajjemi, M. (2023c). Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach, Molecular Simulation. 49(4), 365–376. https://doi.org/10.1080/08927022.2022.2159996. DOI: https://doi.org/10.1080/08927022.2022.2159996
Mollaamin, F. & Monajjemi, M. (2023d). Doping of Graphene Nanostructure with Iron, Nickel and Zinc as Selective Detector for the Toxic Gas Removal: A Density Functional Theory Study. C–Journal of Carbon Research. 9, 20. https://doi.org/10.3390/c9010020. DOI: https://doi.org/10.3390/c9010020
Mollaamin, F. & Monajjemi, M. (2023e). Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method, Sensor Review. 43, 266-279. https://doi.org/10.1108/SR-03-2023-0040. DOI: https://doi.org/10.1108/SR-03-2023-0040
Mollaamin, F. & Monajjemi, M. (2023f). In Silico-DFT Investigation of Nanocluster Alloys of Al-(Mg, Ge, Sn) Coated by Nitrogen Heterocyclic Carbenes as Corrosion Inhibitors, J. Clust. Sci. 34, 2901-2918. https://doi.org/10.1007/s10876-023-02436-5. DOI: https://doi.org/10.1007/s10876-023-02436-5
Mollaamin, F. & Monajjemi, M. (2023g). Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: a molecular modeling framework by DFT perspective, J. Mol. Model. 29, 119. https://doi.org/10.1007/s00894-023-05526-3. DOI: https://doi.org/10.1007/s00894-023-05526-3
Mollaamin, F. & Monajjemi, M. (2024a). Adsorption ability of Ga5N10 nanomaterial for removing metal ions contamination from drinking water by DFT, Int. J. Quantum Chem. 124, e27348. https://doi.org/10.1002/qua.27348. DOI: https://doi.org/10.1002/qua.27348
Mollaamin, F. & Monajjemi, M. (2024b). The influence of Sc, V, Cr, Co, Cu, Zn as ferromagnetic semiconductors implanted on B5N10-nanocarrier for enhancing of NO sensing: An environmental eco-friendly investigation, Computational and Theoretical Chemistry.1237, 114666. https://doi.org/10.1016/j.comptc.2024.114666. DOI: https://doi.org/10.1016/j.comptc.2024.114666
Mollaamin, F. & Monajjemi, M. (2024c). Boron nitride doped with transition metals for carbon monoxide detection: a promising nanosensor for air cleaning, Sensor Review. 44(2), 179-193. https://doi.org/10.1108/SR-01-2024-0066 DOI: https://doi.org/10.1108/SR-01-2024-0066
Mollaamin, F. & Monajjemi, M. (2024d). Selectivity and Sensitivity Evaluation of Embedded BN-Nanostructure as a Gas Detector for Air Pollution Scavenging: a Theoretical Study, Russ. J. Phys. Chem. B., 18, 1177-1198. https://doi.org/10.1134/S1990793124700507. DOI: https://doi.org/10.1134/S1990793124700507
Mollaamin, F. & Monajjemi, M. (2024e). Effect of Implanted Titanium, Vanadium or Chromium on Boron Nitride Surface for Increasing Carbon Monoxide Adsorption: Designing Gas Sensor for Green Chemistry Future, Russ. J. Phys. Chem. B., 18, 1199-1216. https://doi.org/10.1134/S1990793124700519. DOI: https://doi.org/10.1134/S1990793124700519
Mollaamin, F. & Monajjemi, M. (2024f). Trapping of toxic heavy metals from water by GN–nanocage: Application of nanomaterials for contaminant removal technique, J. Mol. Struct. 1300, 137214. https://doi.org/10.1016/j.molstruc.2023.137214. DOI: https://doi.org/10.1016/j.molstruc.2023.137214
Mollaamin, F. & Monajjemi, M. (2024g). In Situ Ti-Embedded SiC as Chemiresistive Nanosensor for Safety Monitoring of CO, CO2, NO, NO2: Molecular Modelling by Conceptual Density Functional Theory, Russ. J. Phys. Chem. B. 18, 49-66. https://doi.org/10.1134/S1990793124010159. DOI: https://doi.org/10.1134/S1990793124010159
Mollaamin, F. & Monajjemi, M. (2025). Perspective of Clean Energy‑saving by Semiconducting Quantum Dot Nanomaterials through Photoelectric and Density of States Analysis, J Fluoresc. https://doi.org/10.1007/s10895-025-04207-z. DOI: https://doi.org/10.1007/s10895-025-04207-z
Mollaamin, F. Ilkhani, A. Sakhaei, N. Bonsakhteh, B. Faridchehr, A. Tohidi, S. Monajjemi, M. (2015). Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study, Journal of Computational and Theoretical Nanoscience. 12(10), 3148-3154. https://doi.org/10.1166/jctn.2015.4092. DOI: https://doi.org/10.1166/jctn.2015.4092
Mollaamin, F. Mohammadi, S. Khalaj, Z. & Monajjemi, M. (2024). Computational Modelling of Boron Nitride Nanosheet for Detecting and Trapping of Water Contaminant, Russ. J. Phys. Chem. B., 18, 67-82. https://doi.org/10.1134/S1990793124010330 DOI: https://doi.org/10.1134/S1990793124010330
Mollaamin, F. Shahriari, S. Monajjemi, M. & Khalaj, Z. (2023). Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption, J. Clust. Sci. 34(3), 1547-1562. https://doi.org/10.1007/s10876-022-02335-1 DOI: https://doi.org/10.1007/s10876-022-02335-1
Monajjemi, M. Karachi, N. & Mollaamin, F. (2014). The investigation of sequence-dependent interaction of messenger RNA binding to carbon nanotube, Fullerenes Nanotubes and Carbon Nanostructures. 22(7), 643-662. https://doi.org/10.1080/1536383X.2012.717557. DOI: https://doi.org/10.1080/1536383X.2012.717557
Monajjemi, M. Khaleghian, M. Tadayonpour, N. & Mollaamin, F. (2010). THE EFFECT OF DIFFERENT SOLVENTS AND TEMPERATURES ON STABILITY OF SINGLE-WALLED CARBON NANOTUBE: A QM/MD STUDY, Int. J. Nanosci. 09, 517-529. https://doi.org/10.1142/S0219581X10007071. DOI: https://doi.org/10.1142/S0219581X10007071
Monajjemi, M. Razavian, M.H. Mollaamin, F. Naderi, F. Honarparvar, B. (2008). A theoretical thermochemical study of solute-solvent dielectric effects in the displacement of codon-anticodon base pairs, Russian Journal of Physical Chemistry A. 82(13), 2277-2285. https://doi.org/10.1134/S0036024408130207. DOI: https://doi.org/10.1134/S0036024408130207
Monajjemi, M. Sobhanmanesh, A. & Mollaamin, F. (2013). Theoretical studies of solvent effects on binding of Sn (CH 3)2(N-acetyl-L-cysteinate) with single-walled carbon nanotube, Fullerenes Nanotubes and Carbon Nanostructures. 21(1), 47-63. https://doi.org/10.1080/1536383X.2011.574325. DOI: https://doi.org/10.1080/1536383X.2011.574325
Monajjemi, M. Yamola, H. & Mollaamin, F. (2014). Study of bio-nano interaction outlook of amino acids on single-walled carbon nanotubes, Fuller. Nanotub. Carbon Nanostruct. 22, 595-603. https://doi.org/10.1080/1536383X.2012.702163. DOI: https://doi.org/10.1080/1536383X.2012.702163
Ocotitla Muñoz, A.D. Escobedo-Morales, A. Skakerzadeh, E. Anota, E.C. (2021). Effect of homonuclear boron bonds in the adsorption of DNA nucleobases on boron nitride nanosheets, J. Mol. Liquids. 322, 11495. https://doi.org/10.1016/j.molliq.2020.114951. DOI: https://doi.org/10.1016/j.molliq.2020.114951
Perdew, J.P. Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
Piñero, J. J. Ramírez, P. J. Bromley, S. T. Illas, F. Viñes, F. Rodriguez, J. A. (2018). Diversity of Adsorbed Hydrogen on the TiC (001) Surface at High Coverages, J. Phys. Chem. C. 122, 28013-28020. https://doi.org/10.1021/acs.jpcc.8b07340. DOI: https://doi.org/10.1021/acs.jpcc.8b07340
Qyyum, M. A. Chaniago, Y. D. Ali, W. Saulat, H. Lee, M. (2020). Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction, Energies, 13, 5023, https://doi.org/10.3390/en13195023. DOI: https://doi.org/10.3390/en13195023
Rivard, E. Trudeau, M. Zaghib, K. (2019). Hydrogen Storage for Mobility: A Review, Materials. 12, 1973. https://doi.org/10.3390/ma12121973. DOI: https://doi.org/10.3390/ma12121973
Rodríguez Juárez, A. Ortiz-Chi, F. Borges-Martínez, M. Cárdenas-Jirón, G. Salazar Villanueva, M. Chigo Anota, E. (2019). Stability, electronic and optical properties of the boron nitride cage (B47N53) from quantum mechanical calculations, Physica E: Low-dimensional Systems and Nanostructures. 111, 118-126. https://doi.org/10.1016/j.physe.2019.02.017. DOI: https://doi.org/10.1016/j.physe.2019.02.017
Rodríguez Juárez, A. Salazar Villanueva, M. Cortés-Arriagada, D. Chigo Anota, E. (2019). Fullerene-like boron nitride cages BxNy (x + y = 28): stabilities and electronic properties from density functional theory computation, J Mol Model., 25, 21. https://doi.org/10.1007/s00894-018-3902-6. DOI: https://doi.org/10.1007/s00894-018-3902-6
Shtansky, D.V. Matveev, A.T. Permyakova, E.S. Leybo, D.V. Konopatsky, A.S. Sorokin, P.B. (2022). Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids, Nanomaterials. 12, 2810. https://doi.org/10.3390/nano12162810. DOI: https://doi.org/10.3390/nano12162810
Villanueva, M.S. Hernandez, A.B. Shakerzadeh, E. Anota, E.C. (2023). Effect of global charge on stability and electronic properties of B36N36 cage and isomers, Physica E: Low-dimensional Systems and Nanostructures. 152, 115758. https://doi.org/10.1016/j.physe.2023.115758. DOI: https://doi.org/10.1016/j.physe.2023.115758
Weng, Q.H. Wang, X.B. Wang, X. Bando, Y. Golberg, D. (2016). Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem. Soc. Rev. 45 (14), 3989-4012. https://doi.org/10.1039/C5CS00869G. DOI: https://doi.org/10.1039/C5CS00869G
Yanai, T. Tew, D.P. & Handy, N.C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters. 393(1-3), 51-57. https://doi.org/10.1016/j.cplett.2004.06.011. DOI: https://doi.org/10.1016/j.cplett.2004.06.011
Yang, Y. Peng, Y. Saleem, M.F. Chen, Z. Sun, W. (2022). Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications, Materials. 15, 4396. https://doi.org/10.3390/ma15134396. DOI: https://doi.org/10.3390/ma15134396
Yu, X. Zhang, X. Wang, H. Wang, Z. Feng, G. (2017). High-Coverage H 2 Adsorption on the Reconstructed Cu2O (111) Surface, J. Phys. Chem. C. 121, 22081-22091. https://doi.org/10.1021/acs.jpcc.7b06361. DOI: https://doi.org/10.1021/acs.jpcc.7b06361
Zadeh, M.A.A. Lari, H. Kharghanian, L. Balali, E. Khadivi, R. Yahyaei, H. Mollaamin, F. et al. (2015). Density Functional Theory Study and Anti-Cancer Properties of Shyshaq Plant: In View Point of Nano Biotechnology, J. Comput. Theor. Nanosci. 12, 4358. https://doi.org/10.1166/jctn.2015.4366. DOI: https://doi.org/10.1166/jctn.2015.4366
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista de la Facultad de Ciencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR








